ETA-Danmark A/S Kollegievej 6 DK-2920 Charlottenlund Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk

Authorised and notified according to Article 10 of the Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions Member States relating to construction products

MEMBER OF EOTA

European Technical Approval ETA-07/0285

This ETA replaces the previous ETA 07/0285 and ETA 07/0314

Trade name: Hold Downs

Post Bbases

SIMPSON STRONG-TIE A/S Holder of approval:

Hedegaardsvej 4 – 11, Boulstrup

DK-8300 Odder

Tel. +45 87 81 74 00

Fax +45 87 81 74 09

Internet www.simpsonstrongtie.dk

Generic type and use of con-

struction product:

Three-dimensional nailing plate (timber to timber and

timber to concrete/steel hold downs)

2013-04-30 Valid from:

> 2018-04-30 to:

Manufacturing plant:

Simpson Strong-Tie

Denmark

Simpson Strong-Tie Strong-Tie

Simpson

Simpson Strong-Tie

Simpson Strong-Tie ZAC des Winchester

A/S 5151 2600 Hedegaards S. Airport Internation Quatre 4-11, Way al Street vei Stockton Boulstrup 8300 Odder CA 95206 OH 43228

USA

Columbus, 85400 Sainte USA

Chemins Plaine

France

Road Cardinal Point Tamworth Gemme La Staffordshire B78 3HG

United Kingdom

This European Approval contains:

Technical 118 pages including 4 annexes which form an integral part

of the document

INDEX

I LEGAL BASIS AND GENERAL CONDITIONS	4
II SPECIAL CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL	5
1 DEFINITION OF PRODUCT AND INTENDED USE	5
2 CHARACTERISTICS OF PRODUCT AND ASSESSMENT	7
3 ATTESTATION OF CONFORMITY AND CE MARKING	10
3.1 Attestation of Conformity system	
3.2 Responsibilities	
3.3 CE marking	
4 ASSUMPTIONS UNDER WHICH THE FITNESS OF THE PRODUCT FOR THE INTENDED US 12	E WAS FAVOURABLY ASSESSED
4.1 Manufacturing	12
4.2 Installation	
4.3 Maintenance and repair	
ANNEX A: REVISION HISTORY	
TABLE WITH THE PRODUCT NAMES AND ALTERNATIVE NAMES / HOLD DOWNS	12
TABLE WITH THE PRODUCT NAMES AND ALTERNATIVE NAMES / POST BASES	
ANNEX B TYPICAL INSTALLATION	16
B1 TYPICAL INSTALLATION POST BASES	16
B2 TYPICAL INSTALLATION HOLD DOWN	
ANNEX C CHARACTERISTIC LOAD-CARRYING CAPACITY	
C1 DESIGN BASIS - GENERAL	
C1 DESIGN BASIS - GENERAL C2 DEFINITION OF FORCE DIRECTIONS	
C2 DEFINITION OF FORCE DIRECTIONS	
C2a Force directions for post bases	
ANNEX D PRODUCT DEFINITION AND CAPACITIES	24
POST BASES	24
D1: PPD	24
D2: PI	27
D3: PP / PPL	29
D4: PL	31
D5: PIL	
D6: PIS / PISB / PISMAXI / PISBMAXI	35
D7: PLS AND PLB	37
D8: PVD, PVDB, PVI, PVIB	39
D9: PPB AND PPS	43
D10: PPA / PBL	45
D11: PJPS / PJPB / PJIS / PJIB	47
D12: PUA	50
D13: FPB	
D14: PLPP180	54
D15: PPR	
D16: PPRIX	56
D17: PPRB	
D18: APB100/150	
D19: PPRC	60
D20: PBLR	
D21: PPUP	62

Page 3 of 118 of European Technical Approval no. ETA-07/0285

D22: PPS AND PPSDT	6
D23: PPSP	6
D24: PPSR320	69
D25: PPMINI	7
D26: APB7090/100	7′
D27: PBP60/50	74
D28: PBS	70
D29: ABE	79
D30: CPB AND CPS	8
D31: PGS	83
D32: CMR AND CMS	85
HOLD DOWNS	88
D60: HTT AND LTT	8
D61: HD5A	9
D62: HD3B	99
D63: AKR	94
D64: AH	99
D65: HD TENSION TIE	
D66: HD2P BASED ON COMPONENTS	10
D67: BETA	113
D68: HE ANCHOR	11.
	113

I LEGAL BASIS AND GENERAL CONDITIONS

- 1. This European Technical Approval is issued by ETA-Danmark A/S in accordance with:
 - Council Directive 89/106/EEC of 21
 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹⁾, as amended by Council Directive 93/68/EEC of 22 July 1993²⁾.
 - Bekendtgørelse 559 af 27-06-1994 (afløser bekendtgørelse 480 af 25-06-1991) om ikrafttræden af EF direktiv af 21. december 1988 om indbyrdes tilnærmelse af medlemsstaternes love og administrative bestemmelser om byggevarer.
 - Common Procedural Rules for Requesting, Preparing and the Granting of European Technical Approvals set out in the Annex to Commission Decision 94/23/EC³⁾.
 - EOTA Guideline ETAG 015 Threedimensional nailing plates, September 2002 edition.
- 2. ETA-Danmark A/S is authorized to check whether the provisions of this European Technical Approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European Technical Approval and for their fitness for the intended use remains with the holder of the European Technical Approval.
- 3. This European Technical Approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European Technical Approval.
- 4. This European Technical Approval may be withdrawn by ETA-Danmark A/S pursuant to Article 5(1) of Council Directive89/106/EEC.

1)

Official Journal of the European Communities No L40, 11 Feb 1989, p 12.

- 2) Official Journal of the European Communities Nº L220, 30 Aug 1993, p 1.
- 3) Official Journal of the European Communities N° L 17, 20 Jan 1994, p 34.

- 5. Reproduction of this European Technical Approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of ETA-Danmark A/S. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European Technical Approval.
- 6. This European Technical Approval is issued by ETA-Danmark A/S in English. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

II SPECIAL CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

Definition of the product

The hold downs are one or more pieces, non-welded hold downs. They are intended for timber to timber, timber to concrete or timber to steel connections fastened by a range of nails, screws or bolts.

Post base ABE, PBS and U-shoe are manufactured by pressing of galvanized steel plates. PBP60/50 is manufactured by pressing of raw steel. All other post bases are welded steel connectors.

The upper part e.g. a plate, a U-shaped plate or a vertical plate for embedment into the timber is fastened to the timber member with nails, screws, bolts or dowels.

The lower part of the post base is either a bar, a threaded rod, a tube or a plate for embedment into the support of concrete or a steel plate to be fastened by anchor bolts to the concrete support.

Steel quality, dimensions of the post bases, hole positions and corrosion protection are shown in Annex A.

The post bases and hold downs can also be produced from stainless steel type 1.4401 or type 1.4404 according to EN 10088-2 or a stainless steel with a minimum characteristic yield stress of 235 N/mm² or a minimum ultimate tensile strength of 330 N/mm². Dimensions, hole positions, steel type and typical installations are shown in Annex B.

Intended use

The intended use of the post bases and the hold downs is to support timber structures or wood-based structural members to their support, where requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106/EEC shall be fulfilled. Each connection shall be made with one post base.

The static and kinematic behaviour of the timber members or the supports shall be as described in Annex D.

The wood members can be of solid timber, glued laminated timber and similar glued members, or woodbased structural members with a characteristic density from 290 kg/m³ to 420 kg/m³.

This requirement to the material of the wood members can be fulfilled by using the following materials:

- Solid timber classified to C14-C40 according to EN 338 / EN 14081
- Glued members of timber classified to C14-C40 according to EN 338 / EN 14081 when structural adhesives are used.
- Glued laminated timber classified to GL24c or better according to EN 1194 / EN 14080.
- Solid Wood Panels, SWP according to EN 13353.
- Laminated Veneer Lumber LVL according to EN 14374
- Plywood according to EN 636
- Oriented Strand Board, OSB according to EN 300

Annex C states formulas for the characteristic load-carrying capacity of the post bases and the hold down connections, which depend on the characteristic density of the timber employed.

For some of the connectors Annex B states the load-carrying capacities of the post bases and the hold down connections for a characteristic density of 350 kg/m³.

For timber or wood based material with a lower characteristic density than 350 kg/m 3 the load-carrying capacities shall be reduced by the k_{dens} factor:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)$$

Where ρ_k is the characteristic density of the timber in kg/m³.

For timber or wood based material with a higher characteristic density than 350 kg/m³ the load-carrying capacities shall be taken as that for 350 kg/m³ unless detailed analyses are conducted.

The design of the connections shall be in accordance with Eurocode 5 or a similar national Timber Code. The wood members shall have a thickness which is larger than the penetration depth of the nails into the members.

The hold downs are primarily for use in timber structures subject to the dry, internal conditions defined by service class 1 and 2 of Eurocode 5 and for connections subject to static or quasi-static loading.

The hold downs can also be used in outdoor timber structures, service class 3, when a corrosion protection in accordance with Eurocode 5 is applied, or when stainless steel with similar or better characteristic yield or ultimate strength is employed.

The post bases with a zinc coating Z275 according to EN 10326:2004 or G90 according to ASTM A-653 are intended for use in service class 1 and 2 according to EN

1995 (Eurocode 5).

Post bases which are hot dipped galvanized according to EN ISO 1461:1999 with a zinc coating thickness of approximately 55 µm or made from stainless steel according to EN 10088:2005 or sherardized according to EN 13811:2003 or electroplated zinc according to EN 1403 and 12329:2000 allowing a use in external conditions are intended for use in service class 1,2 and 3 according to EN 1995 (Eurocode 5).

The hold downs may also be used for connections between a timber member and a support made from concrete blocks or similar.

Assumed working life

The assumed intended working life of the post bases and the hold downs for the intended use is 50 years, provided that they are subject to appropriate use and maintenance.

The information on the working life should not be regarded as a guarantee provided by the manufacturer or ETA-Danmark A/S. An "assumed intended working life" means that it is expected that, when this working life has elapsed, the real working life may be, in normal use conditions, considerably longer without major degradation affecting the essential requirements.

2 Characteristics of product and assessment

ETAG para.	Characteristic	Assessment of characteristic
	2.1 Mechanical resistance and stability*)	
6.1.1	Characteristic load-carrying capacity	See Annex B
6.1.2	Stiffness	No performance determined
6.1.3	Ductility in cyclic testing	No performance determined
	2.2 Safety in case of fire	
6.2.1	Reaction to fire	The hold downs are made from steel classified as Euroclass A1 in accordance with EN 13501-1 and EC decision 96/603/EC, amended by EC Decision 2000/605/EC
	2.3 Hygiene, health and the environment	
6.3.1	Influence on air quality	No dangerous materials **)
	2.4 Safety in use	Not relevant
	2.5 Protection against noise	Not relevant
	2.6 Energy economy and heat retention	Not relevant
	2.7 Related aspects of serviceability	
6.7.1	Durability	The hold downs have been assessed as having satisfactory durability and serviceability when
6.7.2	Serviceability	used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service class 1, 2 and 3
6.7.3	Identification	See Annex A

^{*)} See page 8 of this ETA

**) In accordance with http://europa.eu.int-/comm/enterprise/construction/internal/dangsub/dangmain.htm In addition to the specific clauses relating to dangerous substances contained in this European Technical Approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU Construction Products Directive, these requirements need also to be complied with, when and where they apply.

Safety principles and partial factors

The characteristic load-carrying capacities have been calculated considering different ratios between the partial factors for timber connections and steel cross sections.

According to clause 6.3.5 of EN 1990 (Eurocode – Basis of structural design) the characteristic resistance for structural members that comprise more than one material acting in association should be calculated as

$$R_{d} = \frac{1}{\gamma_{M,1}} R \left\{ \eta_{1} X_{k,1}; \eta_{i} X_{k,i(i>1)} \frac{\gamma_{m,1}}{\gamma_{m,i}}; a_{d} \right\}$$

where $\gamma_{M,1}$ is the global partial factor for material 1 (in this case wood), $\gamma_{m,1}$ is the partial factor on the material and $\gamma_{m,i}$ are material partial factors for the other materials, i.e. the calculations are made with material parameters modified by multiplication by

$$k_{modi} = \gamma_{m,1} / \gamma_{m,i}$$

The characteristic load-carrying capacities have been calculated considering a ratio between the partial factor for timber connections and steel / concrete cross sections

$$k_{modi} = 1,18$$
 for steel yield strength

(EC5:
$$k_{modi,y} = \frac{1,30}{1,10} = 1,18$$
)

 $k_{modi} = 1,0$ for steel ultimate strength

$$(EC5: k_{modi,u} = \frac{1,30}{1,25} \approx 1,0)$$

 $k_{modi} = 0.87$ for anchor bolt in concrete

$$(EC5: k_{modi,c} = \frac{1,30}{1.50} = 0.87)$$

For k_{modi} > 1,18 / 1,0 / 0,87 the load-carrying capacities stated in Annex B are valid (on the safe side).

For k_{modi} <1,18 / 1,0 / 0,87 the load-carrying capacities stated in Annex B have to be multiplied by a factor

$$k_{safe} = \frac{k_{modi,y}}{1.18} or \frac{k_{modi,u}}{1.0} or \frac{k_{modi,c}}{0.87}$$

Mechanical resistance and stability

See annex D for characteristic load-carrying capacity in the different force directions F_1 to F_5 .

The characteristic capacities of the post bases and the hold downs are determined by calculation assisted by testing as described in the EOTA Guideline 015 clause 5.1.2. They should be used for designs in accordance with Eurocode 5 or a similar national Timber Code.

No performance has been determined in relation to ductility of a joint under cyclic testing. The contribution to the performance of structures in seismic zones, therefore, has not been assessed.

No performance has been determined in relation to the joint's stiffness properties - to be used for the analysis of the serviceability limit state.

Fastener

Connector nails and screws in accordance with ETA-04/0013

The load-carrying capacities of the post bases and the hold downs have been determined based on the use of connector nails 4,0x35, 4,0x40, 4,0x50 or 4,0x60 in accordance with ETA-04/0013. It is allowed to use connector screws 5,0x35, 5,0x40 or 5,0x50 or connector nails 4,2x35, 4,2x50 or 4,2x60 in accordance with ETA-04/0013 with the same or better performance as the 4,0 mm connector nails and still achieve the same load-carrying capacity of the connection.

The capacity of a post base connection and a hold down connection with 4,0x50 connector nails in accordance with ETA-04/0013 can be calculated by linear interpolation between the capacities for 4,0x40 and 4,0x60 connector nails.

Threaded nails in accordance with prEN 14592

The design model also allows the use of threaded nails in accordance with prEN 14592 with a diameter in the range 4.0-4.2 mm and a minimum length of 35 mm, assuming a thick steel plat when calculating the lateral nail load-carrying capacity. If no calculations are made a reduction factor equal to the ratio between the characteristic withdrawal capacity of the actual used threaded nail and the characteristic withdrawal capacity of the corresponding connector nail according to table B1 in ETA-04/0013 is applicable for all load-carrying capacities of the connection.

Other fasteners

Further, for most hold downs, anchor bolts are assumed as fasteners to a reinforced concrete structure. For such hold downs it is stated at the tables with load-carrying capacities (Annex B) which characteristic capacities have been assumed for the bolt connection. Bolts to a steel structure with at least the same capacities can also be used.

Stainless steel

For the post bases and the hold downs produced from stainless steel type 1.4401 or type 1.4404 according to EN 10088-2:2005 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 N/mm², a minimum 1.0% yield stress of 270 N/mm² and a minimum ultimate tensile strength of 530 N/mm² the characteristic load carrying capacities can be considered as the same as those published in this document subject to the use of stainless CNA connector nails or CSA connector screws covered by the ETA-04/0013 or stainless threaded nails or screws in accordance to the standard EN 14592 respecting the rules given in the paragraph "fasteners" above.

Related aspects of serviceability

Corrosion protection in service class 1 and 2 In accordance with ETAG 015 the hold downs shall have a zinc coating weight of min. Z275. The steel employed is S250 GD with min. Z275 according to EN 10346 and G90 SS Grade 33 according to ASTM A-653.

Corrosion protection in service class 3

In accordance with Eurocode 5 the hold downs with a thickness of up to 3 mm shall be made from stainless steel. Hold downs with a thickness from 3 to 5 mm can be made from stainless steel or have a zinc coating of min. Fe/Zn 25c/Z350 according to ISO 2081/EN 10147. The nails or screws shall be produced from stainless steel or have a zinc coating of min. Fe/Zn 25c.

This requirement is fulfilled by post bases with a corrosion protection hot-dip galvanized of approximately 55 μm according to EN ISO 1461:1999 or stainless steel according to EN10088:2005 or electroplated zinc coating according to EN12329:2000 allowing a use of the product in external conditions or sherardizing according to EN 13811:2003.

3 Attestation of Conformity and CE marking

3.1 Attestation of Conformity system

The system of attestation of conformity is 2+ described in Council Directive 89/106/EEC (Construction Products Directive) Annex III.

- a) Tasks for the manufacturer:
 - (1) Factory production control,
 - (2) Initial type testing of the product,
- b) Tasks for the notified body:
 - (1) Initial inspection of the factory and the factory production control,
 - (2) Continuous surveillance

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer has a factory production control system in the plant and exercises permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer are documented in a systematic manner in the form of written policies and procedures. This production control system ensures that the product is in conformity with the European Technical Approval.

The manufacturer shall only use raw materials supplied with the relevant inspection documents as laid down in the control plan¹. The incoming raw materials shall be subject to controls and tests by the manufacturer before acceptance. Check of materials, such as sheet metal, shall include control of the inspection documents presented by suppliers (comparison with nominal values) by verifying dimension and determining material properties, e.g. chemical composition, mechanical properties and zinc coating thickness.

The manufactured components are checked visually and for dimensions.

The control plan, which is part of the technical documentation of this European Technical Approval, includes details of the extent, nature and frequency of testing and controls to be performed within the factory production control and has been agreed between the approval holder and ETA-Danmark A/S.

The results of factory production control are recorded and evaluated. The records include at least the following information:

- Designation of the product, basic material and components;
- Type of control or testing;
- Date of manufacture of the product and date of testing of the product or basic material and components;
- Result of control and testing and, if appropriate, comparison with requirements;
- Signature of person responsible for factory production control.

The records shall be presented to ETA-Danmark A/S on request

3.2.1.1 Initial type testing of the product

For initial type testing the results of the tests performed as part of the assessment for the European Technical Approval shall be used unless there are changes in the production line or plant. In such cases the necessary initial type testing has to be agreed between ETA-Danmark A/S and the notified body

3.2.2. Tasks of notified bodies

3.2.2.1 Initial inspection of the factory and the factory production control

The approved body should ascertain that, in accordance with the control plan, the factory, in particular the staff and equipment, and the factory production control, are suitable to ensure a continuous and orderly manufacturing of the angle brackets with the specifications given in part 2.

3.2.2.2 Continuous surveillance

The approved body shall visit the factory at least twice a year for routine inspections. It shall be verified that the system of factory production control and the specified manufacturing processes are maintained, taking account of the control plan.

The results of product certification and continuous surveillance shall be made available on demand by the certification body to ETA-Danmark A/S. Where the provisions of the European Technical Approval and the control plan are no longer fulfilled, the certificate of conformity shall be withdrawn by the approved body.

The control plan has been deposited at the ETA-Danmark A/S and is only made available to the approved bodies involved in the conformity attestation procedure.

3.3 CE marking

The CE marking shall be affixed on each packaging of connectors. The initials "CE" shall be accompanied by the following information:

- The identification number of the notified body.
- Name or identifying mark of the manufacturer.
- The last two digits of the year in which the marking was affixed.
- Number of the European Technical Approval.
- Name and size of product.
- Number of the EC certificate of conformity.
- Number of the ETA guideline (ETAG no. 15).

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The post bases and the hold downs are manufactured in accordance with the provisions of the European Technical Approval using the automated manufacturing process as identified during the inspection of the plant by ETA-Danmark A/S and the approved body and laid down in the technical documentation.

4.2 Installation

The execution of the connection shall be in accordance with the manufacturers installation guide.

Hold downs

A hold down connection is deemed fit for its intended use provided:

- The forces shall act on the timber members as described in Annex C.
- The timber member shall be free from wane under the nails in the vertical flap.
- The support shall be restrained against rotation.
- Nail or screw types and sizes shall be those mentioned in the tables of Annex D.
- The nails or screws shall be inserted without predrilling of the holes.
- There shall be nails or screws in the holes as prescribed in Annex D.
- There shall be no gap between the hold down connector and the timber member or the support, unless otherwise described
- The bolts shall have a diameter not less than the hole diameter minus 2 mm.
- The bolts shall have washers as specified in Annex C

Post bases

The stated type of fasteners for each post base has to be applied in applicable holes in the post base.

The installation instructions to be followed are:

- The primary structural member the post member shown in typical installation page 16 or a beam member to which the post bases are fixed shall be:
 - Restrained against rotation
 - Capable to transfer the force to the post bases as assumed.
 - Free from wane in areas in contact with the post

base.

- The secondary structural member the concrete support to which the post bases are fixed shall be:
 - Made from concrete of at least strength class C15, unless otherwise is indicated in annex B of this ETA
- To ensure sufficient capacity the designer has to take into account splitting of the timber.
- The timber member shall be free from wane.
- There shall be no gap between the timber and the horizontal contact area.
- Otherwise the gap between the timber member and the post base may not exceed 3 mm.
- There are no specific requirements relating to preparation of the timber members.

4.3 Maintenance and repair

Maintenance is not required during the assumed intended working life.

Should repair prove necessary, it is normal to replace the post base / the hold down.

Thomas Bruun Manager, ETA-Danmark

Annex A: Revision History

· ·	Modifications and additions to the previous ETA-07/0314 valid from 2012-01-09 to 2013-09-12 and the ETA 07/0285 valid from 2012-01-27 to 2017-01-27				
Pages	Update				
All	Merging of both named ETAs, all pages created new				
	AKR – new values / nail pattern; thickness 3,0mm added				
	Added HD3B				
	PPUP70/ PPUP90: modify some sizes and the size of tube				
	PPR, PPRB, APB: delete wood screwsØ12mm and anchor bolts				
	PPD: modify the values F _{R2}				
	PL: modify the values				
	HD: modify the hole diameter for the bolts (Ø of bolt + 2mm)				
	HD: added new sizes				
	HD, BETA: modify the values to $(R_{1,k} = A_{gross} \times 233 \text{N/mm}^2)$				
	Added possibility for installation of some Hold Downs on a timber floor				

Modifications an	Modifications and additions to the previous ETA-07/0314 valid from 2010-12-16 to 2013-09-12				
Pages	Update				
1-5	Renamed the index				
27-32	Added the new components of HD2P				
51-52	Added the characteristic capacities for the new components of HD2P				

Table with the product names and alternative names / Hold downs

Alternative names are given by the products in annex D

The annexed "x" in the name of products is for the different size of products, the range is given in the Δ nnex Δ

It may be possible to added at the end of name following letter and/or combinations.

G = galvanized

-B = without Barcode

S or R = Stainless or Rostfrei / rostfri

HS = high anticorrosive steel

L = left

R = right

Table with the product names and alternative names / post bases

	alternative names				
Product Name	UK	France	Denmark	Germany	old name
PPD				,	D
PI		PPI/26000			1
PP					Р
PPL					PL
PL					L
PIL					IL
PIS					IS
PISB					ISB
PISMAXI					IS MAXI
PISBMAXI		ISBMAX			ISB MAXI
PLS		IODIVII OX			LS
PLB					LB
1 LD		PB31950			LD
PVD		PB31948			Vario D
		PB31951			
PVDB		PB31949			Vario DB
PVI					Vario I
PVIB					Vario IB
PPB					PB
PPS					PS
PJPS					JPS
PJPB					JPB
PJIS					JIS
PJIB					JIB
PUA					U-Shoe
PPA					
FPB					
PLPP180					
PPR					
PPRIX					
PPRB					
APB100/150					
PPRC	_	_	_	_	_
PBLR	_	_	_	_	_
PPUP	-			•	·
PPS					
PPSDT					
PPSP					
PPSR320					
					1
PPMINI					
APB7090					+
PBP					
PBS					
ABE					
CPB					
CPS	<u> </u>				

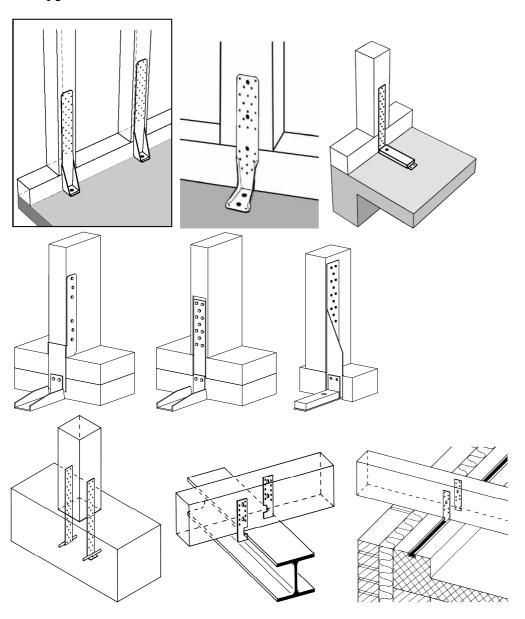
	alternative names						
Product Name	UK France Denmark Germany old name						
PGS							
PBL							
CMR							
CMS							

It may be possible to add the following letter and/or combinations at the end of the name.

G = galvanized

-B = without Barcode

S or R = Stainless or Rostfrei / rostfri


HS = high anticorrosive steel

Annex B Typical Installation

B1 Typical installation post bases

B2 Typical installation hold down

Annex C Characteristic load-carrying capacity

C1 Design Basis - general

The design values F_d are calculated from the modified characteristic capacities $F_{R,k}$ for service class 1 and 2 and the indicated load-duration classes as:

$$F_d = \frac{F_{R,k}}{\gamma_M}$$

with the material partial coefficient γ_{M} for wood.

Modified characteristic capacity means, that the characteristic load-carrying capacities have been modified by the factor k_{mod} as given in **Table 1**.

The design values F_d are calculated form characteristic capacities $F_{R,k}$ as:

$$R_d = \frac{k \mod R_k}{\gamma_M}$$

with the material partial coefficient γ_M for wood and the load-duration factor k_{mod} is given in table 1 or 2, correspondent the service class

Table 1 Factor k_{mod} for service class 1 and 2

Load duration class and k _{mod} factors for service class 1 and 2							
P	P L M S I						
Permanent Long term Medium term Short term Instantaneous							
0,6	0,7	0,8	0,9	1,1			

Table 2 Factor k_{mod} for service class 3

Load duration class and k _{mod} factors for service class 3							
P L M S I							
Permanent Long term Medium term Short term Instantaneous							
0,5	0,55	0,65	0,7	0.9			

For Service class 3 the characteristic capacities may be calculated from values given in tables by interpolation analog to the k_{mod} factors, or using the formulas with the relevant k_{mod} .

Density

The load-carrying capacities of the post base and the hold downs connections are stated for a timber strength class C24 with a characteristic density of 350 kg/m3 unless otherwise indicated.

The load-carrying capacity of the connections for a lower characteristic density should be determined under the assumption that the load-carrying capacity is proportional to the density. In consequence, the value should be reduced using the factor k_{dens} as defined below:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)$$

where ρ_k is the characteristic density of the timber in kg/m³ and 350 is the characteristic density for timber class C24 in kg/m³.

The load-carrying capacity for a larger characteristic density shall be taken as equal to the one published in this document unless a special investigation is made

Concrete

The load-carrying capacities of the post base connections are stated for a concrete class C15 unless otherwise indicated. **Installation with bonded anchorage**

The post bases of types: **PJIS, PLS, PJPS, PPS** may be installed in reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum as a post-installed-anchorage with injection system Simpson Strong -Tie ® SET-XP Epoxy Adhesive Injection System (acc. ETA-11/0360) or Simpson Strong-Tie ® AT-HPTM (acc. ETA-11/0150 or ETA-11/0151). The design of the anchorage installation shall be performed in accordance with the latest versions of the equivalent European technical approval (ETA).

The post bases of types: **PI, PP, PPD** may be installed in reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum as a post-installed-anchorage with injection system Simpson Strong -Tie ® SET-XP Epoxy Adhesive Injection System. The design of the anchorage installation shall be performed in accordance with the latest version of the European technical approval ETA-11/0360.

Drill hole diameter d ₀					threaded rod
Injection Mortar System	Threaded rod		Reinforcement bar		or
System	M16	M20	Ø16	Ø20	reinforcement bar
SET-XP	18 mm	24 mm	20 mm	25 mm	
AT-HP	18 mm	22 mm	-/-	-/-	h_0
					// // / / *
***					$\downarrow \downarrow d_0$

Wane

Where force is carried by contact compression no wane may occur.

Where the lateral force is acting toward a Hold Down connector the force is carried by contact compression so for this case no wane may occur in the surface of the timber under the vertical flap. Additionally, no wane may occur under the nails.

Fastening

Unless otherwise indicated in the calculations the holes in the post bases have to be fully applied with the applicable fasteners. The fastener types for which the calculations have been made are stated at each post base.

The nail pattern shall be as described in Annex D. The fastener types for which the calculations have been made are stated at the relevant post bases and hold downs.

The thickness of the beam shall be a minimum of the embedment depth of the nails or screws.

Assumed characteristic capacities of anchor bolts

The capacity of the anchor bolts are to be checked.

The calculations to use corresponding to the forces are outlined below:

For a lateral load: the axial force for the bolt:

$$F_{axial,bolt} = H_1 x e / f$$

$$F_{lateral,bolt}\!=H_1\,/\,n$$

For an uplift load:

$$F_{axial,bolt} = F_{up} / n$$

With n = number of bolts.

The above method should be used to check anchor bolt capacities unless otherwise stated alongside the product details.

C2 Definition of force directions

C2a Force directions for post bases

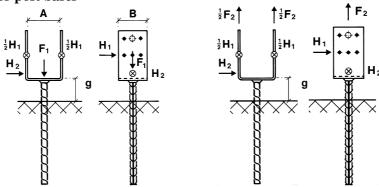


Figure C2a. Typical connection with notation for loads. The actual force directions are indicated at each post base The capacities in the tables are stated in kN and kNm.

Gap

The gap (g) is the distance from the top side of the concrete to the top side of the top plate. The gap is stated for each post base in the following.

Acting forces

Unless otherwise indicated in the tables with load-carrying capacities, the forces are assumed to act as described below:

- F₁ Load-carrying capacity for downward load acting along the central axis of the joint
- F₂ Load-carrying capacity for upward load acting along the central axis of the joint
- H₁ Load-carrying capacity for lateral load acting in the centre of the post in line with the lower row of holes
- H₂ Load-carrying capacity for axial load acting in the centre of the compression zone at the bottom of the timber
- $M_{1/2}$ are described by types CMR and CMS

Combined forces

In the following tables the load-carrying capacities are given for the individual loads: F_1 , F_2 , H_1 and H_2 . For combinations of loads it is – unless otherwise indicated – sufficient to verify that the individual loads can be taken.

For horizontal loads H_1 and H_2 acting simultaneously the resulting horizontal load shall be calculated as $H = \sqrt{H_1^2 + H_2^2}$

C2b Forces directions for hold downs

The characteristic load-carrying capacities are determined for the following force directions.

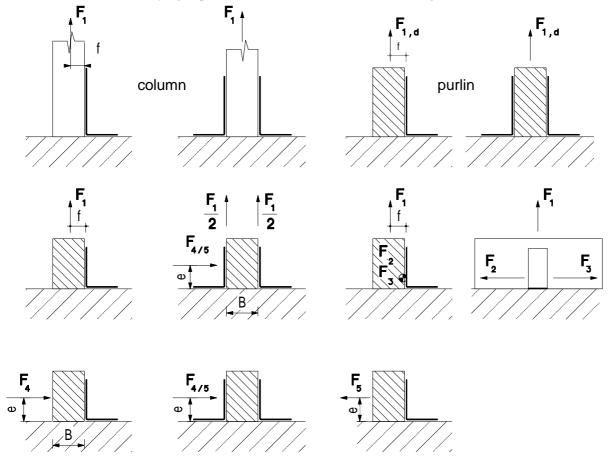


Figure C2b: Forces and their assumed positions. Top row for Hold Downs only subjected to a lifting force. Bottom rows for Hold Downs subjected to both eccentric lifting forces and lateral forces.

Two angle brackets

F₁ Lifting force acting along the central axis of the joint

 F_2 and F_3 Lateral force acting in the joint between the purlin and beam in the purlin direction

 F_4 and F_5 Lateral force acting in the beam direction along the axis of the joint but elevated e above the beam

One angle bracket per connection

F₁ Lifting force acting in the central axis of the angle bracket but in a distance f from the vertical flap of

the angle bracket

If the purlin is prevented from rotation the load-carrying capacity will be half that of a connection with

two angle brackets

 F_2 and F_3 Lateral force acting in the joint between the purlin and the beam in the purlin direction

F₄ Lateral force acting in the beam direction perpendicular to the vertical flap elevated e above the beam

directed towards the angle brackets vertical flap

F₅ Lateral force acting in the beam direction perpendicular to the vertical flap elevated e above the beam

directed away from the angle brackets vertical flap

Combined forces

For practical purposes the strength verification is always carried out for design forces and design capacities. If the forces are combined the following inequalities shall be fulfilled:

$$\sum_{1-i} \left(\frac{F_{i,d}}{R_{i,d}} \right) \le 1,0 \qquad \text{For the hold down AKR shall be fulfilled: } \left(\frac{F_{1,d}}{R_{1,d}} + \frac{F_{4/5d}}{R_{4/5,d}} \right)^2 + \left(\frac{F_{2/3d}}{R_{2/3,d}} \right) \le 1,0$$

Page 22 of 118 of European Technical Approval no. ETA-07/0285

The capacity can be limited by the capacity of the anchor bolt. This has to be investigated separately, see below.

Additional conditions

The nail pattern shall be as described in Annex D. The fastener types for which the calculations have been made are stated at the relevant hold downs.

The thickness of the beam shall be according to Eurocode 5, t_{pen} shall be min. 6d, where d is the diameter of the nail or screw.

C3 Fasteners

Nail, screw and bolt type	Nail, screw a		Finish and corrosion protection	
	Diameter	Length		
Connector nail According to ETA-04/0013	3,7; 4,0; 4,2	35 to 100	Electroplated zinc	
Annular ring shank nail according to EN 14592	3,1 4,0	35 35 to 100	Electroplated zinc	
Smooth shank nail	3.75	75	Hot dipped galvanized	
Smooth shank nail	4.0	90	Hot dipped galvanized	
Lag screw	8; 10; 12; 16		Electroplated zinc	
Wood screw	5,0	-	Electroplated zinc	
Wood screw	10,0	-	Electroplated zinc	
Wood screw	12,0	-	Electroplated zinc	
Wood screw	16,0	-	Electroplated zinc	
Screw, SPAX-S	6,0	≥60	Electroplated zinc	
Screw, SPAX SCRB/9558	5,0	80	Electroplated zinc	
Dowel	8,0	-		
Dowel	10,0	-	Electroplated zinc/ Hot-dip galvanized	
Dowel	12,0	-	1100 orb Survemboo	
Shear plate connector type C2	62 75		Hot-dip galvanized	
Bolt M12	12	-		
Bolt M16	16		Componentino	
Anchor bolt M10	10		Concerning corrosion protection see the	
Anchor bolt M12	12	-	specifications of the	
Anchor bolt M16	16	-	manufacturer	
Concrete screws *	8 – 20			
Ejot Saphier JT2-3-5,5x25	5,5		See the manufacturer	

^{*} according to a technical approval

Annex D Product definition and capacities

Post Bases

D1: PPD

	alternative names					
Product Name	UK France DK D					
PPDxx				D		

xx = size of PPD

Figure D1-1: Drawings

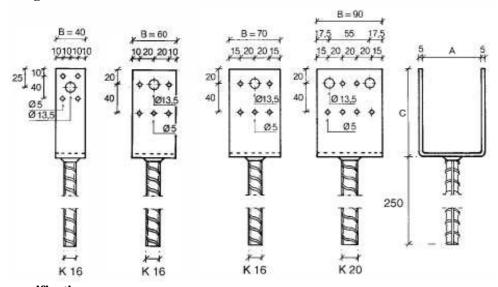


Table D1-1: Size specification

Туре	Dimensions [mm]					
	A	В	C	Ribbed bar Ø		
PPD 48 x 40	48	40	126.5	16		
PPD 50 x 40	50	40	125.5	16		
PPD 73 x 40	73	40	126.5	16		
PPD 100 x 40	100	40	125.5	16		
PPD 98 x 60	98	60	127.5	16		
PPD 70 x 70	70	70	131.5	16		
PPD 73 x 70	73	70	130.0	16		
PPD 75 x 70	75	70	129.0	16		
PPD 80 x 70	80	70	126.5	16		
PPD 90 x 70	90	70	131.5	16		
PPD 100 x 70	100	70	126.5	16		
PPD 90 x 90	90	90	141.5	20		
PPD 100 x 90	100	90	136.5	20		
PPD 115 x 90	115	90	129.0	20		
PPD 120 x 90	120	90	126.5	20		
PPD 123 x 90	123	90	125.0	20		
PPD 125 x 90	125	90	124.0	20		
PPD 140 x 90	140	90	126.5	20		

PPD 148 x 90	148	90	122.5	20
--------------	-----	----	-------	----

Table D1-2: Material specification

Material thickness	Material Grades	Coating specification
5	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN 130 1401.1999
	Or stainless steel as described	

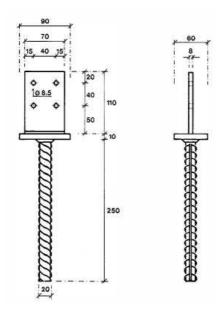
Table D1-3: Characteristic capacity

 $k_{modi}=1,18$

I-modi 1,10								
	load direction							
	characteris	stic capacity	characteris	F ₂ H _{R1} characteristic capacity characteristic		stic capacity	characteris	I _{R2} stic capacity
	,	(N)	,	(N)	`	(N)	-	(N)
size of	mir	n. of	mi	n. of	miı	n. of	mii	n. of
PPD (mm)	timber	steel 1)	timber	steel 1)	timber	steel 1)	timber	steel 1)
48 x 40	40,3	28,0	14,7	13,0		3,4	8,3	5,8
50 x 40	42,0	28,0	14,7	12,2		3,4	8,3	5,8
73 x 40	50,8	28,0		7,3		3,4		5,8
100 x 40	47,9	28,0		5,0		3,4		5,8
98 x 60		28,0		7,6		3,6		5,8
73 x 70		28,0	18,4	12,8		3,5	10,9	5,8
70 x 70		28,0	18,4	13,5		3,6	10,9	5,8
75 x 70		28,0	18,4	12,3		3,6	10,9	5,8
80 x 70		28,0	18,4	11,4		3,7	10,9	5,8
100 x 70		28,0		8,7		3,7		5,8
90 x 90		36,9	22,0	13,4		6,4	18,7	11,4
90x70		36,9	18,4	10,4		5,5	14,6	10,8
100 x 90		36,9	22,0	11,7		6,6	18,7	11,4
115 x 90		36,9		9,9		7,0		11,4
120 x 90		36,9		9,4		7,2		11,4
123 x 90		36,9		9,1		7,2		11,4
125 x 90		36,9		8,9		7,3		11,4
140 x 90		36,9		7,8		7,2		11,4
148 x 90		36,9		7,3		7,3		11,4

 $^{^{(1)}}$ for steel $k_{mod} = 1,0$ shall be used for all load durations

For vertical loads F_1 and horizontal loads H_2 acting simultaneously it shall be verified that: $F_1/F_{R1} + H_2/H_{R2} \le 1$.


For vertical uplift F_2 and horizontal loads H_2 acting simultaneously it shall be verified that: $(F_2 / F_{R2})^2 + (H_2 / H_{R2})^2 \le 1$.

Page 26 of 118 of European Technical Approval no. ETA-07/0285

D2: PI

	alternative names					
Product Name	UK	France	DK	D		
PI		PPI/26000		I		

Figure D2-1: Drawings

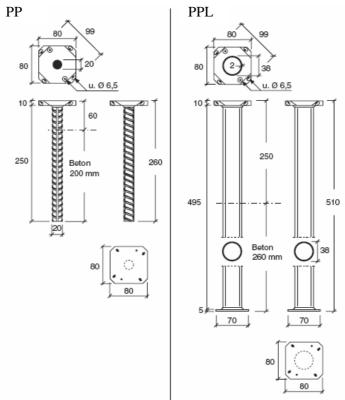
Table D2-1: Size specification

Table D2-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN 150 1401.1999
	Or stainless steel as	
	described	

Table D2-3: Characteristic capacity

 $k_{modi} = 1,18$


Load	Timber	Concrete		Load di	uration cl	ass (kN)
Direction	depth, t [mm]		Р	L	M	S	I
F _{R1}		C12			36,9		
, KI		C15			43,7		
		C20			54,5		
F _{R2}	60				$13,8 \ k_{mod}$		
l R2	80				$16,0 \ k_{mod}$		
	100		$18,7 k_{mod}$				
	≥ 120				$20,7~k_{mod}$		
H _{R1}	60		5,6	6.6	7.5	7,9	7,9
	80		6,5	7,6	7,9	7,9	7,9
	100		7,6	7,9	7,9	7,9	7,9
	≥ 120		7,9	7,9	7,9	7,9	7,9
H_{R2}	60		1,9	2,2	2,5	2,8	3,4
I IR2	80		2,4	2,8	3,3	3,7	4,5
	100		3,6	4,2	4,7	5,3	5,3
	120		4,7	5,4	5,4	5,4	5,4
	140		5,6	5,7	5,7	5,7	5,7
	160		6,3	6,3	6,3	6,3	6,3

For vertical loads F_1 and horizontal loads H_2 acting simultaneously it shall be verified that: $F_1/F_{R1}+H_2/H_{R2} \leq 1$.

D3: PP/PPL

	alternative names					
Product Name	UK	France	DK	D		
PP				Р		
PPL				PL		

Figure D3-1: Drawings

Table D3-1: Size specification

Table D3-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN 150 1401.1999
	Or stainless steel as	
	described	

Table D3-3: Characteristic capacity

 $k_{modi} = 1,18$

Туре	Load	Load duration class (kN)				
	Direction	Р	L	М	S	I
PP	F _{R1}			31,6		

Page 30 of 118 of European Technical Approval no. ETA-07/0285

	F _{R2}	$7,6 k_{mod}$					
	H_R	2,7 k _{mod}					
	F _{R1}		57.1				
PPL	F _{R2}		$7,6~k_{mod}$				
	H_R	1.6	1.9	2.1	2.4	2.5	

D4: PL

	alternative names					
Product Name	UK	France	DK	D		
PL				L		

Figure D4-1: Drawings

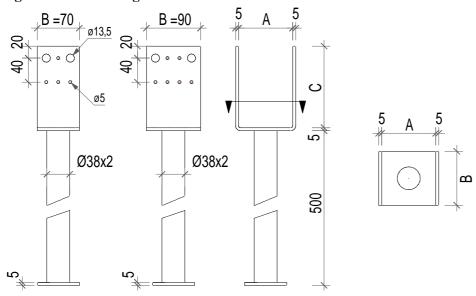


Table D4-1: Size specification

Туре	Dimensions [mm]					
	A	В	С			
PL80/70G	80	70	126			
PL100/70G	100	70	126			
PL90/90G	90	90	141			
PL100/90G	100	90	136			
PL120/90G	120	90	126			
PL140/90G	140	90	126			

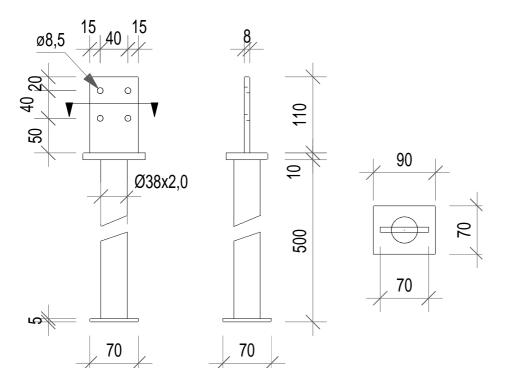
Table D4-2: Material specification

Material thickness	Material Grades	Coating specification
5	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Tube Ø38x2,0	S220JR according to EN10025:2004	EN ISO 1401.1999
	Or stainless steel as described	

Table D4-3: Characteristic capacity

 $k_{modi}=1,18$

		characteristic capacity (kN)			
Load		mir	n. of		
direction	type	timber	steel 1)		
F ₁	all	57,1			
	PL80/70	18,4	17,3		
F ₂	PL80/70	18,4	11,7		
	PL90/90	22,0	18,0		
1 2	PL100/90	22,0	15,1		
	PL120/90	19,0	11,4		
	PL140/90		9,2		
H ₁	all		2,8		
H ₂	all		3,5		


 $^{^{1)}}$ for steel $k_{mod} = 1,0$ shall be used for all load durations

For vertical loads F and any horizontal loads H acting simultaneously it shall be verified that: $F_1/F_R + H/H_R \le 1$.

D5: PIL

	alternative names				
Product Name	UK	France	DK	D	
PIL				IL	

Figure D5-1: Drawings

Table D5-1: Size specification

Table D5-2: Material specification

Material thickness	Material Grades	Coating specification
5, 8, 10 S235JR according to EN 10025:2004		Hot-dip galvanized according to EN ISO 1461:1999
Tube Ø38x2,0	S220JR according to EN10025:2004	EN 150 1401.1999
Or stainless steel as		
	described	

Table D5-3: Characteristic capacity

 $k_{modi}=1,18$

Load	Timber	Load duration class (kN)					
Direction	thickness, t [mm]	Р	L	М	s	I	
F _{R1}		54		5	7		
F _{R2}	60 80 100	$13,8 \ k_{mod}$ $16,0 \ k_{mod}$ $18,7 \ k_{mod}$					
	≥ 120	$20.7~k_{mod}$					
H_{R1}		2.2					
H_{R2}	60 80	1.8 1.8					
	100	2.0					
	120	2.2					
	140	2.4					
	160			2.4			

For vertical loads F and any horizontal loads H acting simultaneously it shall be verified that: $F_1/F_R + H/H_R \le 1$.

D6: PIS / PISB / PISMAXI / PISBMAXI

	alternative names					
Product Name	UK	France	DK	D		
PIS70				IS		
PISBxx				ISB		
PIS Maxi				IS Maxi		
PISB Maxi				ISB Maxi		

xx = size of PISB

Figure D6-1: Drawings

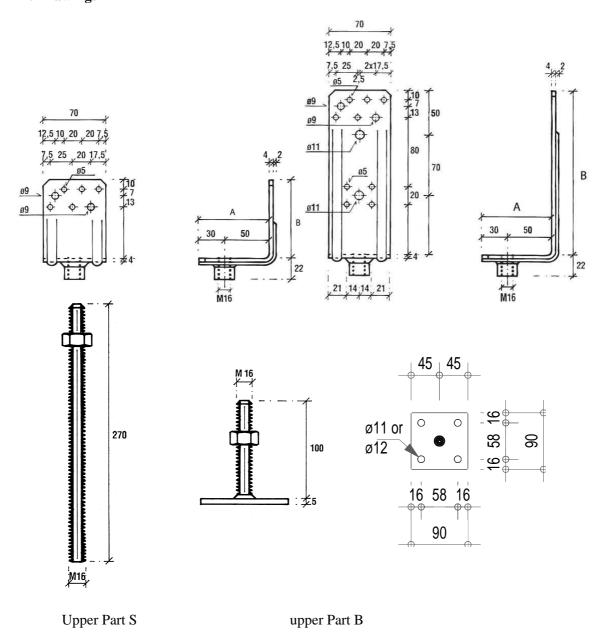
Table D6-1: Size specification See drawing

Table D6-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10, 15	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
tube	S235JR according to EN 10025:2004	EN 13O 1401.1999
	Or stainless steel as described	

Table D6-3: Characteristic capacity

 $k_{modi}=1,18$


		PIS	70	PISBxx			PISM	PISMAXI		PISBMAXI	
	widthof	char	acteristic	teristic capacity [kN]		width of	characteristic capacity [kN]				
Load	timber	min	•	min	. of	timber	min		min	. of	
direction	b [mm]	timber	steel 1)	timber	steel 1)	b [mm]	timber	steel 1)	timber	steel 1)	
F ₁	all	142,8	101,9	142,8	101,9	all	272,2	187,9	272,2	256,9	
	80	16,0		16,0		120	34,5		34,5		
F_2	100	18,7		18,7		140	38,5		38,5		
	120	20,7		20,7		160	42,1		42,1		
	80	10,9		10,9		120	22,5		22,5		
H_1	100	12,7	6,7	11,0	6,1	140	25,2	24,0	25,2	14,1	
	120			11,0		160	27,5		27,5		
	80	4,1		4,1		120	7,6		7,6		
H ₂	100	5,9	5,1	5,9	5,0	140	9,9		9,9		
	120	7,0	5,7	7,9	5,5	160	12,3		12,3		

for steel $k_{\text{mod}} = 1,0$ shall be used for all load durations

D7: PLS and PLB

	alternative names					
Product Name	UK France DK D					
PLS	LS					
PLB				LB		

Figure D7-1: Drawings

Table D7-1: Size specification

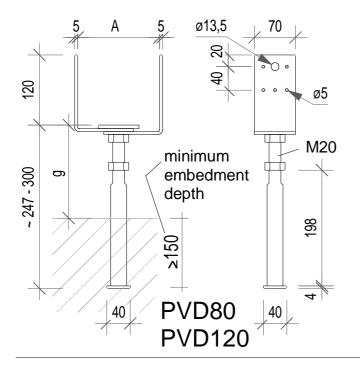
Type	Dimensi	ons [mm]	
	A	В	Upper part
PLS60/65G	60	65	S
PLS60/165G	60	165	S
PLS80/90G	80	90	S
PLS80/190G	80	190	S
PLB60/65G	60	65	В
PLB60/165G	60	165	В
PLB80/90G	80	90	В
PLB80/190G	80	190	В

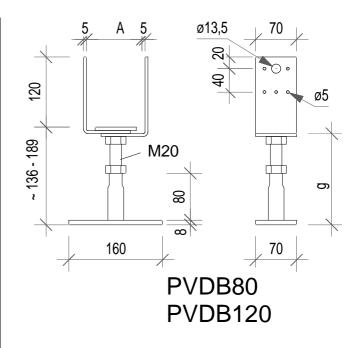
Table D7-2: Material specification

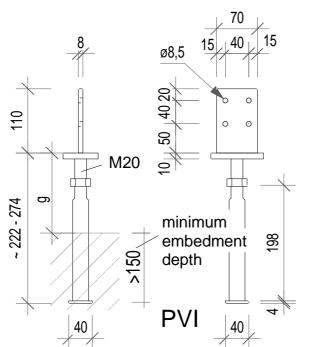
Material thickness	Material Grades	Coating specification
4, 5	S235JR according to EN 10025:2004	Hot-dip galvanized according to
Threaded rod	Threaded rod: S355 JO according to EN 10025:2004	EN ISO 1461:1999
	Or stainless steel as described	

Table D7-3: Characteristic capacity

 $k_{\text{modi}}\!\!=\!\!1,\!18$


		PLB und PLS				
Load	size of PLS /			ic capacity [kN] in. of		
direction	PLB	connection to:	timber	steel 1)		
F ₁	all	column	50,8	36,4		
down	all	beam	20,1	20,2		
		with fastener:	to column or beam			
	60x65	3 CNA4,0x40 or 2 CSA5,0x35	5,4	3,5		
F ₂	60x165	2 CNA4,0x40 or 1 screw 8x60	2,8	3,0		
ирт	80x90	3 CNA4,0x40 or 2 CSA5,0x35	-	2,3		
	80x190	2 CNA4,0x40 or 1 screw 8x60	2,8	2,3		


 $^{^{1)}}$ for steel $k_{mod} = 1.0$ shall be used for all load durations


D8: PVD, PVDB, PVI, PVIB

	alternative names					
Product Name	UK France DK D					
PVD80		PB31950		Vario D80		
PVD120		PB31948		Vario D120		
PVDB80		PB31951		Vario DB80		
PVDB120		PB31949		Vario DB120		
PVI				Vario I		
PVIB				Vario IB		

Figure D8-1: Drawings

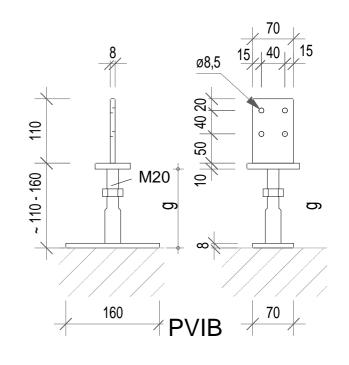


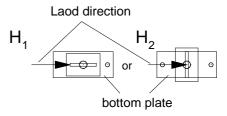
Table D8-1: Size specification

Table Do-1. Size specification					
Type	Dimension	ns [mm]			
	A min	A max			
PVD 80	80	120			
PVD 120	120	160			
PVDB80	80	120			
PVDB120	120	160			

Table D8-2: Material specification

Material thickness	Material Grades	Coating specification
4, 5, 8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999

Threaded rod	S355 JO according to EN 10025:2004	
	Or stainless steel as	
	described	


Table D8-3: Characteristic capacity

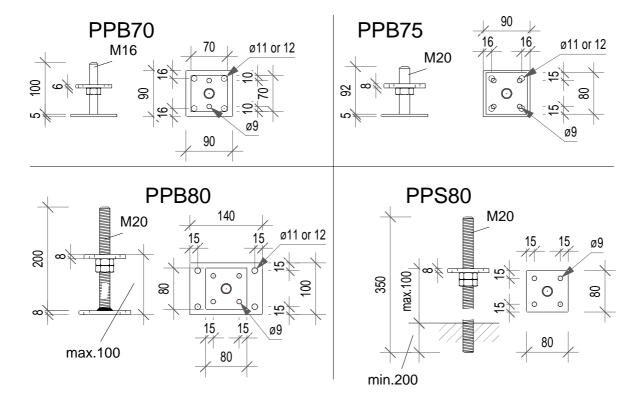
 $k_{modi}=1,18$

		PVD		PVBI)	
	width of	ch	aracteris	stic capacity [kN]		
Load	timber	min	. of	min.	of	
direction	b [mm]	timber	steel 1)	timber	steel 1)	
F_1		77,8	49,0	77,8	49,0	
	80	17,6		17,6		
F_2	120	17,6	11,6	17,6	11,6	
	160	15,2	7,6	15,2	7,6	
		at g =		at g =		
		48mm	2,7	136mm	1,4	
H₁	≥80	73mm	2,1	161mm	1,2	
		98mm	1,7	186mm	1,1	
		48mm	6,5	136mm	3,2	
H_2	≥80	73mm	3,9	161mm	2,7	
		98mm	2,8	186mm	2,3	

		PVI		PVI	3
	width of	ch	aracteristi	ic capacity [l	κN]
Load	timber	mir	n. of	min.	of
direction	b [mm]	timber	steel 1)	timber	steel 1)
F ₁		90,7	49,0	90,7	49,0
	80	16,0		16,0	
F_2	120	20,7		20,7	
	160	20,7		20,7	
		at g =	57mm	at g = 1	45mm
H ₁			2,7		2,6
	80	2,5	2,2	1,9	1,9
H ₂	120	3,8	3,8	3,3	2,7
	160	5,7	4,7	3,5	2,7

 $^{^{1)}}$ for steel $k_{mod} = 1,0$ shall be used for all load durations

PVDB and **PVIB**


The horizontal load H_1 or H_2 shall always be in the direction of the longer side of the bottom plate.

Modification factors	s for differir	ng size g		
_	P'	VI	P۱	/IB
_	g	faktor	g	faktor
Basis for table before	32	1,15	120	1,1
	57	1,0	145	1,0
	82	0,85	170	0,85

D9: PPB and PPS

	alternative names					
Product Name	UK France DK D					
PPB70				PB70		
PPB75				PB75		
PPB80		PB40605		PB80		
PPS80				PS80		

Figure D9-1: Drawings

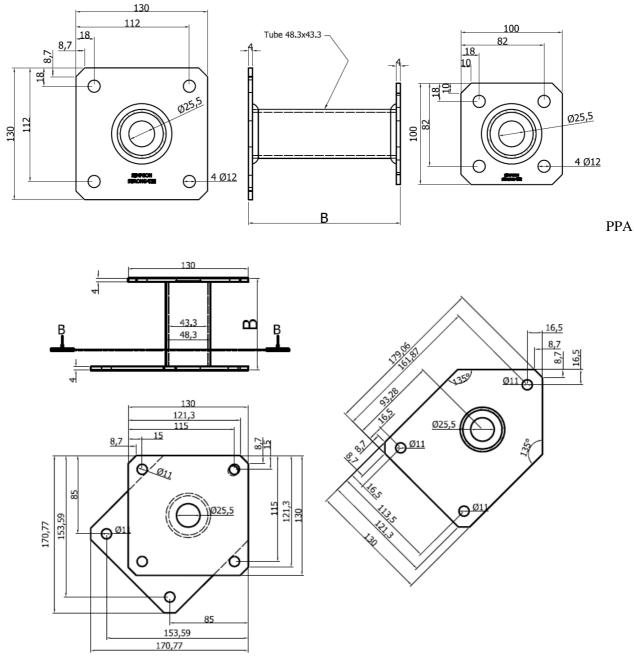
Table D9-1: Size specification n/a

Table D9-2: Material specification

Material thickness	Material Grades	Coating specification
6, 8	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	S355 JO according to EN 10025:2004	EN ISO 1401.1999
Or stainless steel as described		

Table D9-3: Characteristic capacity

 $k_{modi} = 1,18$


Load			c capacity [kN] n. of
direction	type	timber	steel 1)
			40,0 ²⁾
F ₁	PPS		49,5 ³⁾
	PPB	88.3	63.9

 $[\]begin{array}{|c|c|c|c|c|c|}\hline & PPB & 88,3 & 63,9\\\hline {}^{1)} \ for \ steel \ k_{mod} = 1,0 \ shall \ be \ used \ for \ all \ load \ durations\\\hline {}^{2)} \ with \ C15 \ concrete\\\hline {}^{3)} \ with \ C20 \ concrete\\\hline \end{array}$

D10: PPA / PBL

	alternative names					
Product Name	UK	France	DK	D		
PPA						
PBL						

Figure D10-1: Drawings

PBL

Table D10-1: Size specification

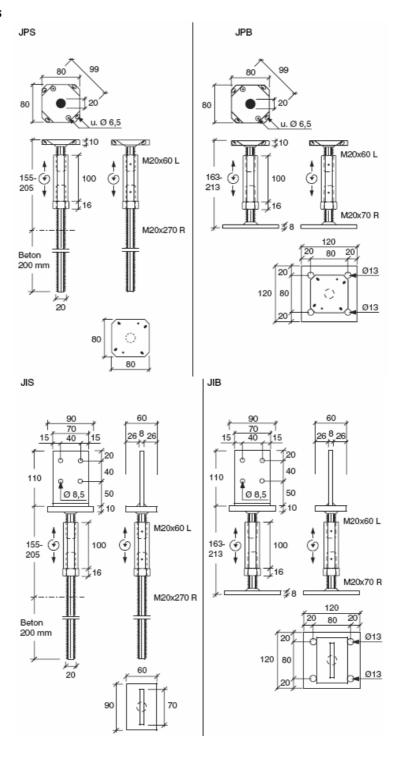
Туре	Dimension [mm]
	В
PPA100	100
PPA150	150
PBL100	100
PBL150	150

Table D10-2: Material specification

Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2004 S235 JRH according to EN	Hot-dip galvanized according to EN ISO 1461:1999
tube	10219-1:2006	
	Or stainless steel as described	

Table D10-3: Characteristic capacity

 $k_{modi}=1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	ı
F _{R1}	PPA100 / PBL 100 PPA150 / PBL 150	55,9	61,7	67,3	72,9	83,7

The capacities for post base PPA are valid also for the case, where the connector is turned upside down.

D11: PJPS / PJPB / PJIS / PJIB

	alternative names					
Product Name	UK	France	DK	D		
PJPS				JPS		
PJPB				JPB		
PJIS				JIS		
PJIB				JIB		

Figure D11-1: Drawings

Table D11-1: Size specification

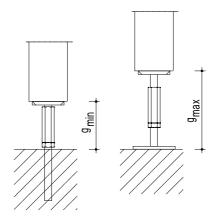
n/a

Table D11-2: Material specification

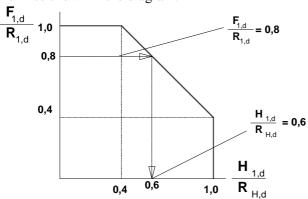
Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod S355 JO according to EN 10025:2004		EN 150 1401.1999
Or stainless steel as described		

Table D11-3: Characteristic capacity

 $k_{modi}=1,18$


Load	width of timber	PJIS and PJIB characteristic capacity (kN) min. of		
direction	b [mm]	timber	steel 1)	
F ₁		90,7	54,5	
	80	16,0		
F_2	100	18,7		
	120	20,7		
H₁	bei g _{min}		1,4	
1 11	bei g _{max}		1,1	
Ц	80	2,0	1,6	
H ₂ bei g _{min}	100	2,3	1,8	
bei g _{min}	120	2,6	1,8	
	80	1,7	1,4	
H ₂	100	2,0	1,4	
bei g _{max}	120	2,1	1,4	

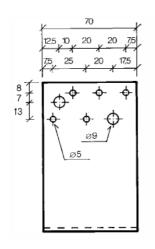
¹⁾ for steel $k_{mod} = 1.0$ shall be used for all load durations

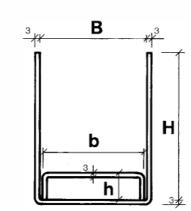

	I		D.100	1 0 100
				und PJPB
			characte	ristic capacity
				(kN)
Load			m	nin. of
direction	Type		timber	steel 1)
Е	PJPB			54,5
F ₁	PJPS			54,5
Е	PJPB		7.6	
F ₂	PJPS		7,6	
н	PJPB und PJPS	g _{min}	2,7	1,7 1,4

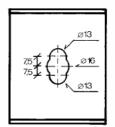
 $^{^{1)}}$ for steel $k_{mod} = 1.0$ shall be used for all load durations

For types PJPS and PJPB are no difference for \boldsymbol{H}_1 and \boldsymbol{H}_2 .

For vertical load F_1 and horizontal load H acting simultaneously it shall be verified that the combination of loads fall below the lines shown in the diagram.


For vertical load F_2 and any horizontal load H acting simultaneously it shall be verified that: $F_2/F_{R\,2}+H/H_R\leq 1$


D12: PUA


	alternative names					
Product Name	UK France DK D					
PUAxx				U-Anker		

xx = width of the PUA

Figure D12-1: Drawings

The inside part is named PUA/Bxx

Table D12-1: Size specification

	size [mm	<u>ı</u>]			size [mm]	
type	В	Н	Ø	inside part	b	h
PUA45	46	127	5; 9	PUA/B42	42	27
PUA50	51	125	5; 9	PUA/B47	47	25
PUA60	61	120	5; 9	PUA/B57	57	20
PUA70	71	115	5; 9	PUA/B67	67	25
PUA80	81	110	5; 9	PUA/B77	77	20
PUA90	91	115	5; 9	PUA/B87	87	25
PUA100	101	110	5; 9	PUA/B97	97	20
PUA120	121	110	5; 9	PUA/B117	117	20

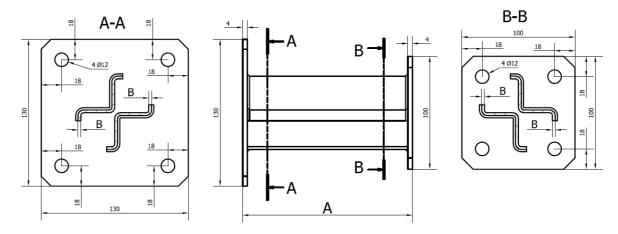
Table D12-2: Material specification

Material thickness	Material Grades	Coating specification
3	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
	Or stainless steel as described	

Table D12-3: Characteristic capacity

 $k_{modi}=1,18$

Load		PUA with PUA/B characteristic capacity (kN) min. of		
direction	Туре	timber steel 1)		
F_1	alle	29,6	34,7	
	PUA45-B	18,1	10,9	
	PUA50-B	18,1	9,8	
	PUA60-B		7,6	
_	PUA70-B		6,2	
F ₂	PUA80-B		5,2	
	PUA90-B		4,5	
	PUA100-B		4,0	
	PUA120-B		3,2	


PUA120-B 3,2

To steel $k_{mod} = 1,0$ shall be used for all load durations

D13: FPB

	alternative names				
Product Name	UK France DK D				
FPB					

Figure D13-1: Drawings

Fasteners to timber: wood screw Ø10. Fastener to concrete: anchor bolt M10.

Table D13-1: Size specification

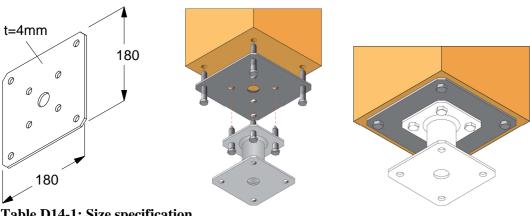
Type	Dimensions [mm]		
	A	В	
FPB100/2 - FPB100/2IX	100	2	
FPB150/2 - FPB150/2IX	150	2	
FPB100/2.5 - FPB100/2.5IX	100	2.5	
FPB150/2.5 – FPB150/2.5IX	150	2.3	

Table D13-2: Material specification

Material thickness	Material Grades	Coating specification
2; 2,5; 4,0	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	EN 150 1401.1999
	Or stainless steel 316L according to EN 10088:2005	

Table D13-3: Characteristic capacity

 $k_{modi} = 1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	I
	FPB100/2 – FPB100/2IX	65.9				
_	FPB150/2 – FPB150/2IX					
F _{R1}	FPB100/2.5 – FPB100/2.5IX		53 0		55. 0	
	FPB150/2.5 – FPB150/2.5IX	66.3	72.8	77.2		

The capacities for post base FPB are valid also for the case, where the connector is turned upside down.

D14: PLPP180

	alternative names				
Product Name	UK	France	DK	D	
PLPP180					

Figure D14-1: Drawings

Table D14-1: Size specification

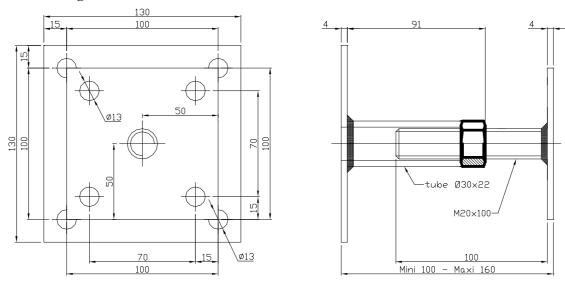
n/a

Table D14-2: Material specification

Material thickness	Material Grades	Coating specification
4	DD11 according to EN 10111:1998	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Table D14-3: Characteristic capacity

n/a


The optional plate is compatible with the following post bases: PPA100, PPA150, FPB100, FPB150, APB100/150, PPRC. The use of this optional plate doesn't change the performance of the post bases.

It must be used with 8 wood screws as shown on the drawing above

D15: PPR

	alternative names				
Product Name	UK	France	DK	D	
PPR					

Figure D15-1: Drawings

Fasteners to timber: wood screw Ø10; Fastener to concrete: anchor bolt M10

Table D15-1: Size specification

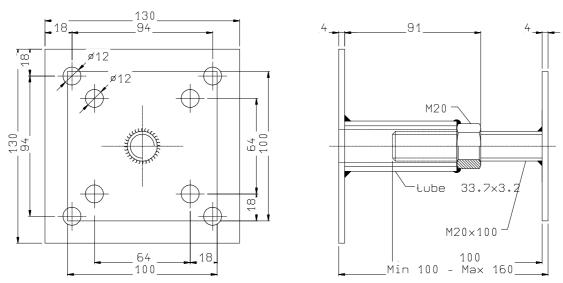
n/a

Table D15-2: Material specification

Material thickness	Material Grades	Coating specification
4	P355 NB according to EN 10120:1997	
tube	P235TR1 according to EN 10216-1:2002	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	steel class 4.6 according to ISO 898:1999	
	Or stainless steel as described	

Table D15-3: Characteristic capacity

 $k_{modi}=1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	ı
F _{R1}	PPR,	39	42	46	48	53

The capacities are valid also for the case, where the connector is turned upside down.

D16: PPRIX

	alternative names				
Product Name	UK	France	DK	D	
PPRIX					

Figure D16-1: Drawings

Fasteners to timber: wood screw Ø10; Fastener to concrete: anchor bolt M10

Table D16-1: Size specification

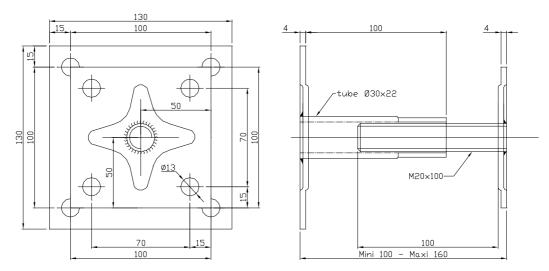
n/a

Table D16-2: Material specification

Material thickness	Material Grades	Coating specification
	Stainless steel 316L	
4	according to EN	
	10088:2005	
tube	B 550 BR+AC according	N/A
tube	to 10080:2006	
Threaded rod	A4 (AISI 316L) according	
Tilleaded Tod	to ISO 350	

Table D16-3: Characteristic capacity

 $k_{modi} = 1,18$


Load	Туре	Load duration class (kN)				
Direction		Р	L	М	s	I
F_{R1}	PPR,	28	30	32	34	38

The capacities are valid also for the case, where the connector is turned upside down.

D17: PPRB

	alternative names					
Product Name	UK France DK D					
PPRB						

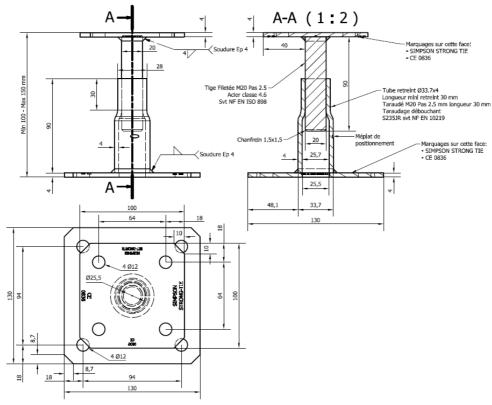
Figure D17-1: Drawings

Table D17-1: Size specification

n/a

Table D17-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A
tube	E235 according to EN 10305:2003	according to EN 12329:2000 and 1403
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as described	


Table D17-3: Characteristic capacity

Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	I
F_{R1}	PPRB	33	36	38	40	45

D18: APB100/150

	alternative names				
Product Name	UK	France	DK	D	
APB100					
APB150					

Figure D18-1: Drawings

Fasteners to timber: wood screw Ø10; Fastener to concrete: anchor bolt M10

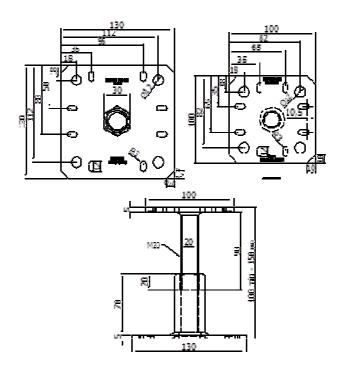
Table D18-1: Size specification

n/a

Table D18-2: Material specification

Table D16-2: Waterial specification							
Material thickness	Material Grades	Coating specification					
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A according to EN 12329:2000 and					
tube	S235 JRH according to EN 10219:2006	1403					
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)					
	Or stainless steel as described						

Table D18-3: Characteristic capacity


Load	Туре	Load duration class (kN)					
Direction		Р	L	М	S	ı	

Page 59 of 118 of European Technical Approval no. ETA-07/0285

D19: PPRC

	alternative names					
Product Name	UK France DK D					
PPRC						

Figure D19-1: Drawings

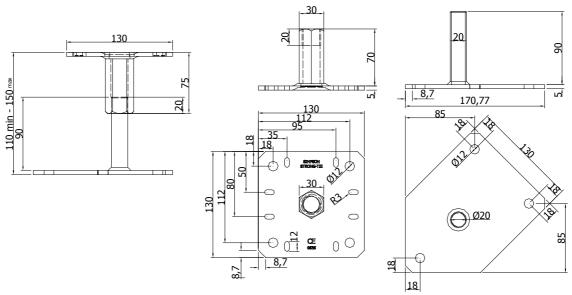
Fasteners to timber: wood screw Ø10; SPAX-S 5,0x80 at 45°; Fastener to concrete: anchor bolt M10

Table D19-1: Size specification

n/a

Table D19-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A
tube	C15RPB according to EN 10084:1999	according to EN 12329:2000 and 1403
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as described	


Table D19-3: Characteristic capacity

Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	I
F _{R1}	PPRC,	40	43	46	49	54

D20: PBLR

	alternative names					
Product Name	UK	France	DK	D		
PPLR						

Figure D3-1: Drawings

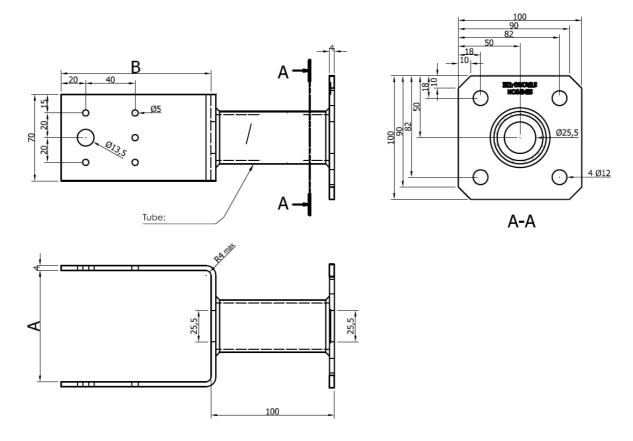
Fasteners to timber: wood screw Ø10; SPAX-S 5.0x80 at 45° ; Fastener to concrete: anchor bolt M10

Table D20-1: Size specification

n/a

Table D20-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn25/A
tube	C15RPB according to EN 10084:1999	according to EN 12329:2000 and 1403
Threaded rod	steel class 4.6 according to ISO 898:1999	Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as described	


Table D20-3: Characteristic capacity

Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	ı
F _{R1}	PBLR	40	43	46	49	54

D21: PPUP

	alternative names					
Product Name	UK	France	DK	D		
PPUP						

Figure D21-1: Drawings

Table D21-1: Size specification

Type	Dimension [m		
	A	В	tube
PPUP70	70	126,5	Ø48,3x2,5
PPUP90	90	121,5	Ø48,3x2,5

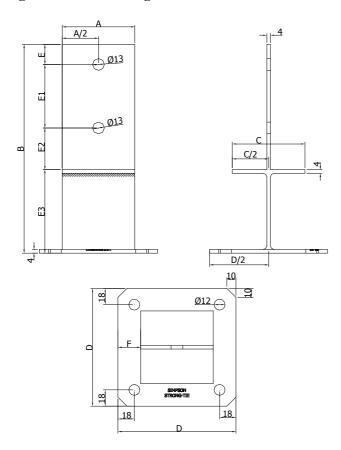
Table D21-2: Material specification

Material thickness	Material Grades	Coating specification
4	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
tube	S235 JRH according to EN 10219-1:2006	EN ISO 1401.1999
	Or stainless steel as described	

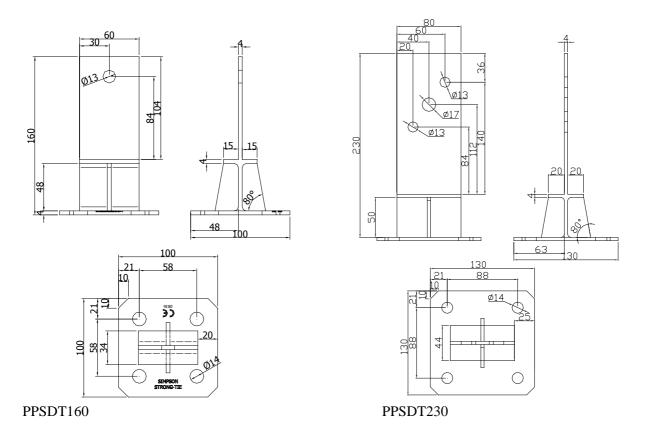
Table D21-3: Characteristic capacity

 $k_{\text{modi}}\!\!=\!\!1,\!18$

Туре	Load	Load duration class (kN)					
	Direction	Р	L	М	s	1	
PPUP 70	F _{R1}	55	65	74	83	101	
	F _{R2}			$17.8 k_{mod}$			
	H_{R1}		$10.6 k_{mod}$				
	H_{R2}	6,4	6,9	7,4	7,8	8,6	
PPUP 90	F _{R1}	73	85	97	103	134	
	F _{R2}	$21.4~k_{mod}$					
	H _{R1}	8.6	10	11.4	12.9	14.1	
	H _{R2}	8,2	8,9	9,5	10,1	11,1	


k_{mod}: load duration factor

To obtain full load-carrying capacities for lifting force and horizontal force the characteristic withdrawal capacity of the anchors should be minimum: 15,4 kN for PPUP70 and 19,2 kN for PPUP90.


D22: PPS and PPSDT

	alternative names				
Product Name	UK	France	DK	D	
PPS					
PPSDT					

Figure D22-1: Drawings

PPS

Table D22-1: Size specification

Type	Dimensions [mm]								
	Α	В	C	D	Е	E1	E2	E3	F
PPS170	60	170	60	100	18	48	48	56	20
PPS230	80	230	80	130	22	70	46	92	25

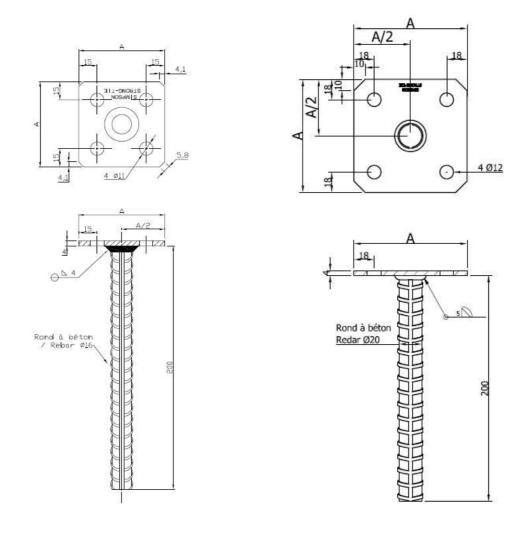
Table D22-2: Material specification

Material thickness	Material Grades	Coating specification	
I S Z 3 S IR 9 C C OT G IN G TO E IN I		Hot-dip galvanized according to EN ISO 1461:1999	
	Or stainless steel as described		

Table D22-3: Characteristic capacity

 $k_{modi}=1,18$

Туре	Load		Load d	luration cla	ss (kN)		
	Direction	Р	L	М	s	ı	
PPS 170	F _{R1}	20,1	21,7	23,2	24,6	27,2	
	F _{R2}			16,4 k_{mod}			
	H _{R1}			10,1			
	H _{R2}			1,2			
PPS 230	F _{R1}	26,8	26,8 28,9 30,9 32,8 36,2				
	F _{R2}	$18,0~k_{mod}$					
	H _{R1}	13,3					
	H _{R2}			1,03			
PPSDT	F _{R1}	31	34	36	38	43	
160	F _{R2}			$8,45~k_{mod}$			
	H_{R1}			9,3			
	H_{R2}	5,4	5,4 5,9 6,3 6,7 7,4				
PPSDT	F _{R1}	41	45	48	51	56	
230	F _{R2}	$23,0~k_{mod}$					
	H _{R1}			15,2			
	H_{R2}	7,2	7,7	8,4	8,9	9,9	


k_{mod}: load duration factor

To obtain full load-carrying capacities for lifting force and horizontal force the characteristic withdrawal capacity of the anchors should be minimum: 20,2 kN for PPS170, 23,7 kN for PPS230, 13,4 for PPSDT160 and 26,8 kN for PPSDT230.

D23: PPSP

	alternative names					
Product Name	UK	France	DK	D		
PPSP						

Figure D23-1: Drawings

PPSP100 and PPSP130

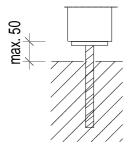
Table D23-1: Size specification

Type	Dimensions [mm]			
	A Ø ribbed ba			
PPSP70	70	16		
PPSP90	90	16		
PPSP100	100	20		
PPSP130	130	20		

PPSP70 and PPSP90

Table D23-2: Material specification

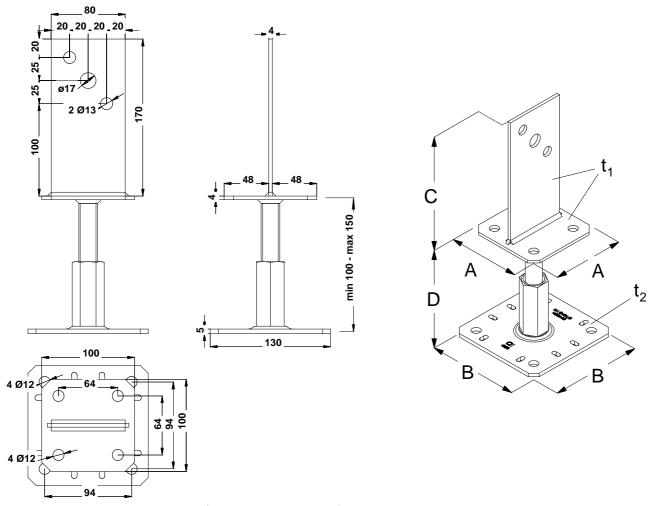
Material thickness	Material Grades	Coating specification
4 types PPSP100; PPSP130	S235JR according to EN 10025:2004	Hot-dip galvanized
4 Types PPSP70; PPSP90	DD11 acc to EN 10111:2008	according to EN ISO 1461:1999
Ribbed bar	B 550 BR+AC according to 10080:2006	
	Or stainless steel as described	


Table D23-3: Characteristic capacity

 $k_{modi}=1,18$

Load	Туре	Load duration class (kN)				
Direction		Р	L	М	S	ı
F _{R1}	PPSP 70	22,7	24,5	26,3	28,0	30,4
	PPSP 90	24,2	26,1	27,9	29,7	30,4
	PPSP 100	33	36	38	41	41
	PPSP 130	33	36	38	41	41

Fasteners to timber: wood screw Ø10.


The characteristic compressive strength of the concrete shall be at least 20 MPa.

D24: PPSR320

	alternative names					
Product Name	UK	France	DK	D		
PPSR320						

Figure D24-1: Drawings

Fasteners to timber: bolt or dowel $\emptyset16$ or bolts or dowel $\emptyset12$. Fastener to concrete: anchor bolt M10.

Table D24-1: Size specification

	size [mm]							
	Α	В	С	D	t_1	t_2	Ø	
							12,0	
PPSR320	100	130	170	100-150	4	5	13,0	
							17,0	

Table D24-2: Material specification

Material thickness	Material Grades	Coating specification
4; 5	S235JR according to EN 10025:2004	Electroplated Zinc Zn12/C according to ISO 2081:2009 and
tube	C15RPB according to EN 10084:1999	EN 1403 or
Threaded rod	Steel class 4.6 according to ISO 898:1999	Sherardizing class C30 according to EN
Concealed plate	DD11 according to EN 10111:2008	13811:2003.
	Or stainless steel as described	

Table D24-3: Characteristic capacity

 $k_{\text{modi}}\!\!=\!\!1,\!18$

Load	Load duration class (kN)					
Direrction	Р	L	М	S	_	
F _{R1}		48,8				
F _{R2}	20,8					

D25: PPMINI

	alternative names					
Product Name	UK	France	DK	D		
PPMINI						

Figure D25-1: Drawings

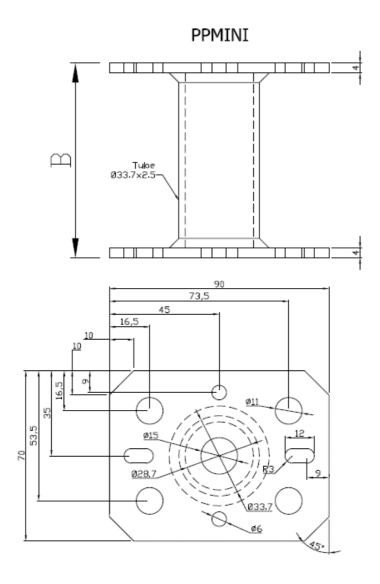


Table D25-1: Size specification

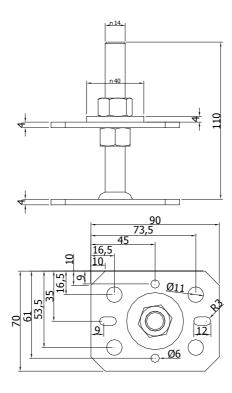
Type	Dimension [mm]	
	В	
PPMINI50	50	
PPMINI70	70	
PPMINI80	80	

Table D25-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
Tube	S235 JRH according to EN 10219-1:2006	EN 150 1401.1999
	Or stainless steel as described	

Table D25-3: Characteristic capacity

 $k_{modi} = 1,18$


Load	Туре	Load duration class (kN)				
Duration		Р	L	М	S	I
F _{R1}	PPMINI	44	48	52	56	63

For PPMINI the capacities are valid also for the case, where the connector is turned upside down.

D26: APB7090/100

	alternative names				
Product Name	UK	France	DK	D	
APB7090/100					

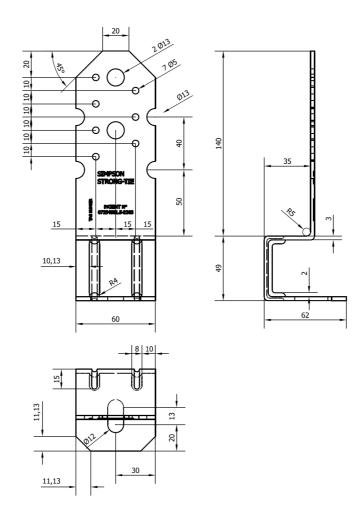
Figure D26-1: Drawings

Table D26-1: Size specification n/a

Table D26-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Electroplated zinc Zn 12/c according to EN 12329:2000 and
Threaded rod	Steel class 4.6 according to EN/ISO 898:1999	or sherardizing class C30 according to EN 13811:2003
	Or stainless steel as described	

Table D26-3: Characteristic capacity


 $k_{\text{modi}}\!\!=\!\!1,\!18$

Load	Туре	Load duration class (kN)				
Duration		Р	L	М	S	I
F _{R1}	APB column APB beam	24 10,2	25 9,8	25 9,5	25 8,4	25 8,4

D27: PBP60/50

	alternative names				
Product Name	UK	France	DK	D	
PBP60/50					

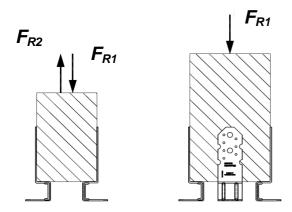
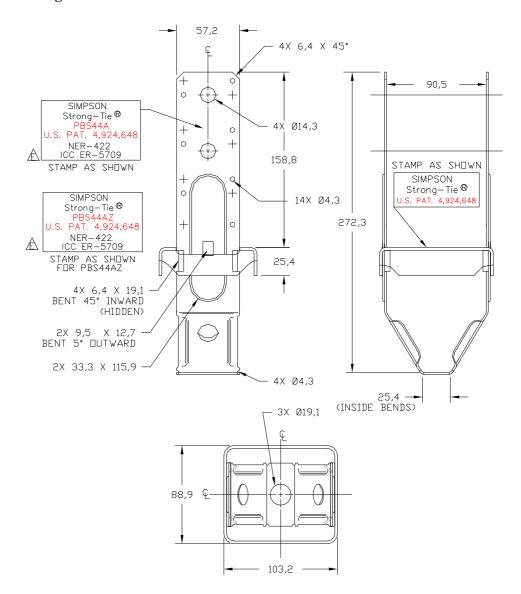

Figure D27-1: Drawings

Table D27-1: Size specification n/a

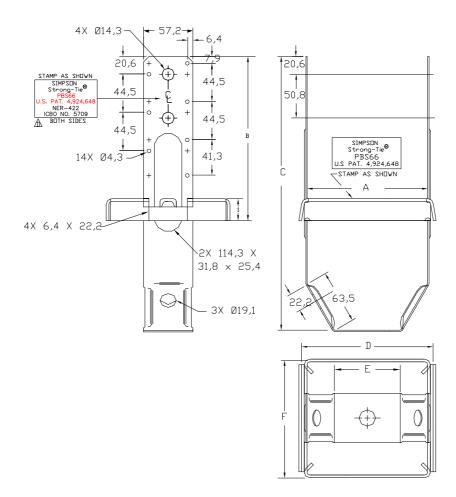
Table D27-2: Material specification

Material thickness	Material Grades	Coating specification
3	S235JR according to EN 10025:2004	Sherardizing class C30 according to EN 13811:2003 Or electroplated zinc Zn25/A according to EN 12329:2000 and 1403 Or electroplated zinc Zn10/A (alkali zinc)
	Or stainless steel as	
	described	

Table D27-3: Characteristic capacity


 $k_{modi}=1,18$

Load	_	No. of post	Load duration class (kN)				
Direction	Туре	bases	Р	P L		S	I
		2			28		
F _{R1}	PBP60/50	4	63				
F _{R2}	PBP60/50	2	8.3				


D28: PBS

	alternative names				
Product Name	UK	France	DK	D	
PBS					

Figure D28-1: Drawings

Page 77 of 118 of European Technical Approval no. ETA-07/0285

Table D28-1: Size specification

Type	Dimension [mm]						
	A B C D E F					F	
PBS46	90,5	187,3	270,7	101,6	25,4	138,1	
PBS66	139.7	190.5	311.2	152.4	76.2	136.5	

Table D28-2: Material specification

Material thickness	Material Grades	Coating specification
2,5 mm G90 SS Grade 33 according to ASTM A-653		Galvanized
	Or stainless steel as described	

Table D28-3: Characteristic capacity

 $k_{\text{modi}}\!\!=\!\!1,\!18$

			Load duration class (kN)				
Туре	Load Direction	Nails ¹⁾	Р	L	M	S	I
PBS 44	F _{R1}		42	46	49	52	57
	F _{R2}	CN 3,7 S 4,0			$\begin{array}{c} 24 \; k_{mod} \\ 16 \; k_{mod} \end{array}$		
PBS 46	F _{R1}		45	48	51	55	60
	F _{R2}	CN 3,7 S 4,0					
PBS 66	F _{R1}		60	65	69	73	81
	F _{R2}	CN 3,7 S 4,0			$24~k_{mod} \\ 16~k_{mod}$	25 16	

Fastener to timber: ARS 3,1: Annular ring shank nail 3,1 x 35

CN 3,7: Connector nail 3,7 x 50 S 3,75: Smooth nail 3,75 x 75 S 4,0: Smooth nail 4,0 x90

 k_{mod} : load duration factor

D29: ABE

	alternative names				
Product Name	UK	France	DK	D	
ABE					

Figure D29-1: Drawings



Table D29-1: Size specification

Type	Dimension [mm]					
	A	B C D E F				F
ABE44	90,5	70,6	15,9	63	13	18
ABE46	90,5	103,2	38,1	65,1	6,4	20,6
ABE66	139,7	79,4	15,9	114,3	19,1	31,8

Table D29-2: Material specification

Material thickness	Material Grades	Coating specification
1,5 to 2,6	G90 SS Grade 33 according to ASTM A-653	Galvanized
	Or stainless steel as described	

Table D29-3: Characteristic capacity

 $k_{modi} = 1,18$

			Load duration class				
Туре	Load Direction	Nails ¹⁾	Р	L	M	S	I
ABE 44	F _{R1}		38	45	51	58	70
	F _{R2}	ARS 3,1 S 3,75	4,3	7,8	$6,7 k_{mod}$ $7,8$	7,8	7,8
ABE 46	F _{R1}		49	57	66	74	90
	F _{R2}	CN 3,7 S 4,0	15.8 k _{mod} 11 k _{mod}				
ABE 66	F _{R1}		79	92	105	118	144
	F _{R2}	CN 3,7 S 4,0	15.8 k _{mod} 11 k _{mod}				

Fastener to timber: ARS 3,1: Annular ring shank nail 3,1 x 35

CN 3,7: Connector nail 3,7 x 50 S 3,75: Smooth nail 3,75 x 75 S 4,0: Smooth nail 4,0 x90

2) k_{mod}: load duration factor

D30: CPB and CPS

	alternative names			
Product Name	UK	France	DK	D
СРВ				CPB40
CPS				CPS40

Figure D30-1: Drawings

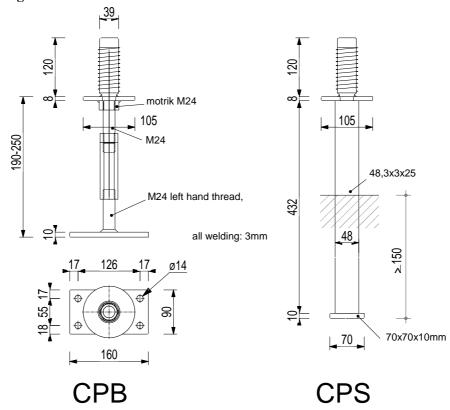


Table D30-1: Size specification

n/a

Table D30-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Het die gelyenieed eegending to
Tube	S235 JR according to EN 10219:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	S355 JO according to EN 10025:2004	
	Or stainless steel as described	

Table D30-3: Characteristic capacity

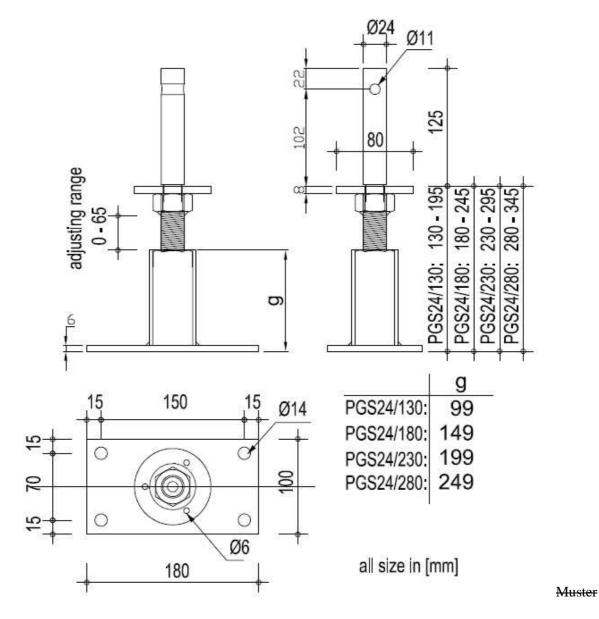
 $k_{\text{modi}}\!\!=\!1,\!18$ for steel and $k_{\text{modi}}\!\!=\!0,\!87$ for concrete have been used

Load	timber size	CPB characteristic capac (kN) min. of	
direction	[mm]	timber	steel 1)
F ₁			61,0
F ₂	≥ 120	23,7	
F ₂ **		13,8	
	h =		
шш	190		1,7
H_1 H_2	250		1,4

Load	timber size	characteri (I	ePS stic capacity kN) n. of
direction	[mm]	timber	steel 1)
F ₁		170,3	118,7
F ₂		23,7	
F ₁ **	b≥ 120	110,7	
F ₂ **		13,8	
H ₁ H ₂		7,2	5,2

for steel $k_{mod} = 1,0$ shall be used for all load durations in case where download AND uplift is possible

For vertical load F_1 and horizontal load H_1 or H_2 acting simultaneously it shall be verified that:


$$F_1 \, / \, F_{R,1} + H_i \, / \, H_{R,i} \, \leq 1$$

D31: PGS

	alternative names				
Product Name	UK France DK D				
PGS				PGS24/x	

x = size

Figure D31-1: Drawings

 $\begin{tabular}{ll} \textbf{Table D31-1: Size specification}\\ n/a \end{tabular}$

Table D31-2: Material specification

Material thickness	Material Grades	Coating specification
8, 10	S235JR according to EN 10025:2004	Hot din galvanizad according to
Tube	S235 JR according to EN 10219:2004	Hot-dip galvanized according to EN ISO 1461:1999
Threaded rod	S355 JO according to EN 10025:2004	
	Or stainless steel as	
	described	

Table D31-3: Characteristic capacity

 $k_{modi}=1,18$

		characteri [eGS stic capacity kN]
Load	timber size	mı	n. of
direction	[mm]	timber	steel 1)
F ₁	100x100	96,1	91,3
	b=80	5,0	
	b=100	5,6	
F ₂	b=120	6,4	
	b=140	7,2	
	for timbersize min. 100mm x100mm		
H ₁	all		2,9
	24/130		2,9
H_2	24/180		2,5
1 12	24/230		2,1
	24/280		1,9

for steel $k_{mod} = 1.0$ shall be used for all load durations

D32: CMR and CMS

Product Name	alternative names			
	UK	France	DK	D
CMR				
CMS				

Figure D32-1: Drawings

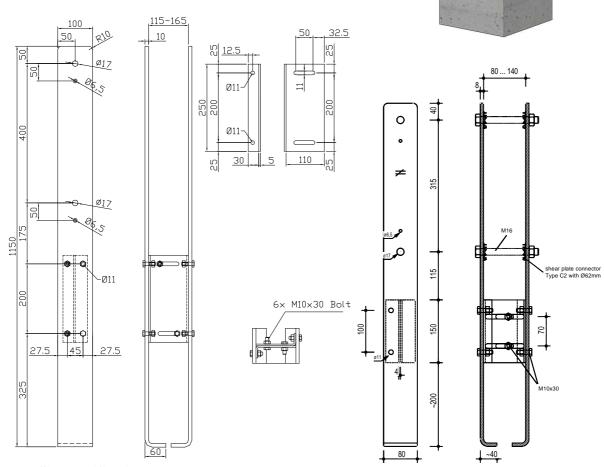


Table D32-1: Size specification $\ensuremath{n/a}$

Table D32-2: Material specification

Material thickness	Material Grades	Coating specification
6, 8, 10	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Table D32-3: Characteristic capacity

 $k_{modi} = 1,18$

 $k_{\text{mod }i} = 1,18$

 $k_{\text{mod }i} = 1,18$

		CMR		
_	Timber size	Characteristic Capacity R _{i,k} [kN] bzw. [kNm]		
Force direction	b [mm]	mi	n. of	
		timber	Steel 1)	
$F_1 = F_2$	≥ 115	117,2		
H_1 for h_1 =200mm	≥ 115	99,0	21,3	
H ₂ for h ₂ =0mm	≥ 115	33,0	30,9	
M ₁	≥ 115	19,8	13,9	
	115	6,7		
	120	7,0		
M_2	125	7,3		
1412	140	8,2		
	150	8,8		
1) 4	160	9,4	laad dunatiana	

	160
1) for steel k _m	$_{od} = 1,0 s$
F ₁	F ₂
H ₂	H ₁ h ₁

CMS				
Force direction	Timber size b [mm]	R [kN] bzv mir	stic Capacity v. [kNm] n. of	
		timber	Steel 1)	
$F_1 = F_2$	≥ 80	96,9		
H₁	≥ 80	74,0	15,0	
H ₂	≥ 80	21,1	19,8	
M ₁	≥ 80	11,6	7,1	
	80	3,9		
N4	100	4,8		
M_2	120	5,8		
1) 6	140	6,8		

 $^{^{1)}}$ for steel $k_{\text{mod}} = 1.0$ shall be used for all load durations

For a load H_1 acting in the height for CMR $h_1 > 200$ mm (for CMS $h_1 > 157$ mm) the load carrying capacity should not be taken as higher than:

For CMR:
$$H_{R1}(h) = H_{R1}(200) \ 200 \ / \ h_1$$
. for CMS: $H_{R1}(h) = H_{R1}(157) \ 157 \ / \ h_1$.

For a load H_2 acting in the height $h_2 > 0$ mm, the load carrying capacity should not be taken as higher than:

$$H_{R2}(h) = \frac{1}{2} F_{R2} a / h_2.$$

where:

The inner distance between the vertical steel plates e.g. the column depth.

For a vertical load F (either F_1 or F_2) and a horizontal load H_1 acting simultaneously it should be verified that $(F/F_{R1})^2 + (H_1/H_{R1})^2 \le 1$

For a vertical load F (either F_1 or F_2) and a horizontal load H_2 in the height h acting simultaneously it should be verified that $H_{R2}(h) \le M_{R2} / (h (1 - F / F_{R1}))$

For combined loads the following check shall be made:

$$\left(\frac{F_{1/2,d}}{R_{1/2,d}}\right)^2 + \left(\frac{H_{1,d}}{R_{H1,d}} + \frac{M_{1,d}}{R_{M1,d}}\right)^2 \le 1$$

$$\left(\frac{F_{1/2,d}}{R_{1/2,d}} + \frac{M_{2,d}}{R_{M2,d}}\right)^2 + \left(\frac{H_{2,d}}{R_{H2,d}}\right)^2 \le 1$$

Hold Downs

D60: HTT and LTT

	alternative names			
Product Name	UK	France	DK	D
HTTx				
LTT20B				

Figure D60-1: Drawings

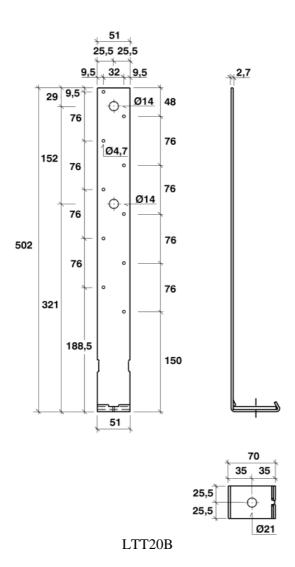
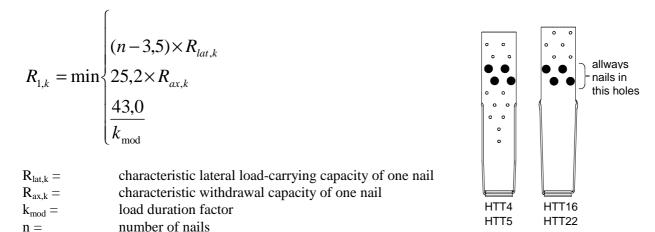


Table D60-1: Size specification n/a

Table D60-2: Material specification

Material thickness	Material Grades	Coating specification
2,7 ; 2,84	G90 galvanized steel SS Grade 33 according to ASTM A-653	
	corresponding to S235 JR according to EN 10025	
	Or stainless steel as	
	described	


The nails in the vertical flap have to be arranged equally left and right about the centre-line.

	Minimum	Maximum
LTT20B	2	10
HTT4	4	18
HTT5	4	26
HTT16	4	18
HTT22	4	32

Table D60-3: Characteristic capacity

HTT4/5/16/22

The characteristic load-carrying capacity of one Hold Down HTT4/5/16/22 is calculated as:

It must be checked, that the anchor fulfils the following formula:

$$\frac{F_{1,d}}{R_{anchord}} \le 1$$

LTT20B

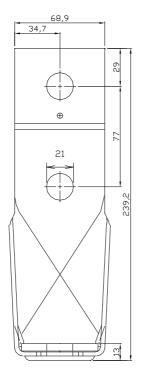
The characteristic load-carrying capacity of one Hold Down LTT 20B is calculated as:

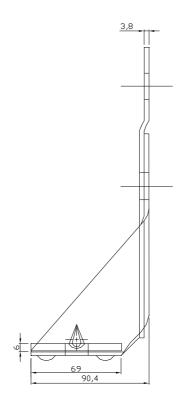
$$R_{1,k} = \min \begin{cases} n \times R_{lat,k} \\ 2,85kN/k_{mod} \end{cases}$$

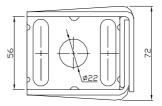
 $R_{lat,k}$ = characteristic lateral load-carrying capacity of one nail

 $k_{mod} =$ load duration factor n = number of nails

 $R_{anchord}$ = Tensile design capacity of the anchor bolt in the concrete


It must be checked, that the anchor fulfils the following formula:


$$\frac{1.5 \times F_{1,d}}{R_{anchor,d}} \le 1$$


D61: HD5A

	alternative names			
Product Name	UK France DK D			
HD5A				

Figure D61-1: Drawings

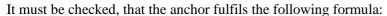
Table D60-1: Size specification

n/a

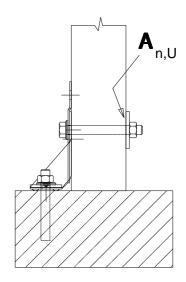
Table D61-2: Material specification

Material thickness	Material Grades	Coating specification
2,7 ; 2,84	G90 galvanized steel SS Grade 33 according to ASTM A-653	
	corresponding to S235 JR according to EN 10025	

Or stainless steel as	
described	

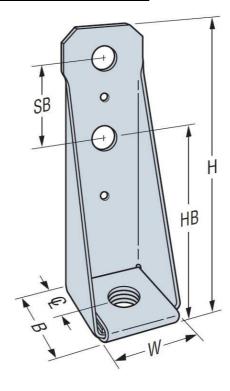

Table D61-3: Characteristic capacity

The characteristic load-carrying capacity of one Hold Down HD5A is calculated as:


$$R_{1,k} = \min \begin{cases} 8.2kN/k_{\text{mod}} \\ 4.15 \times A_{n,U} \times f_{c,90,k} \end{cases}$$

 $\begin{array}{ll} A_{n,u} = & \text{net area of the washer (on the backside of connected timber)} \\ f_{c,90,k} = & \text{characteristic compressive strength perpendicular to timber} \\ R_{anchor,d} = & \text{Tensile design capacity of the anchor bolt in the concrete} \end{array}$

 $k_{mod} = load duration factor$


$$\frac{F_{1,d}}{R_{anchor,d}} \le 1$$

D62: HD3B

	alternative names				
Product Name	UK France DK D				
HD3B					

Figure D61-1: Drawings

Table D62-1: Size specification n/a

Model	H	HB	SB	CL	В	W
HD3B	220	123	45	33	56	59

Table D61-2: Material specification

Material thickness	Material Grades	Coating specification
2,7 ; 2,84	G90 galvanized steel SS Grade 33 according to ASTM A-653	
	corresponding to S235 JR according to EN 10025	
	Or stainless steel as	
	described	

Table D61-3: Characteristic capacity

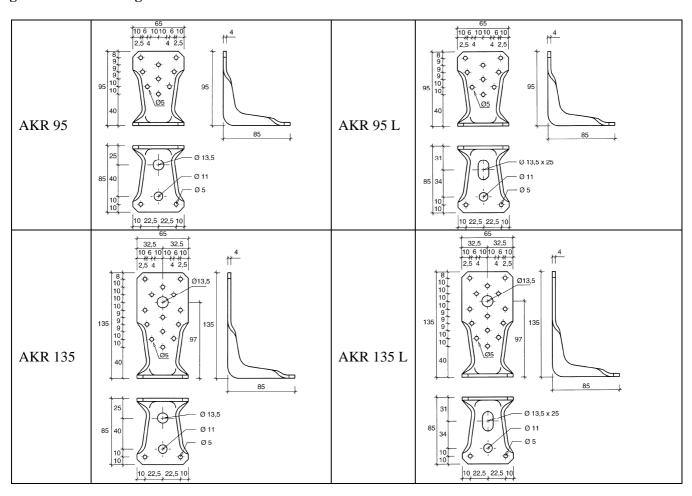
Tubic Dot 5. Char	tuble Bot 5. Characteristic capacity					
Model	Post	Number and Ø post	Ø on header	Characteristic values (kN)		
IID2D	Steel	2 Ø16	Ø16	39.89		
HD3B	Timber	2 Ø16	Ø16	15.59		

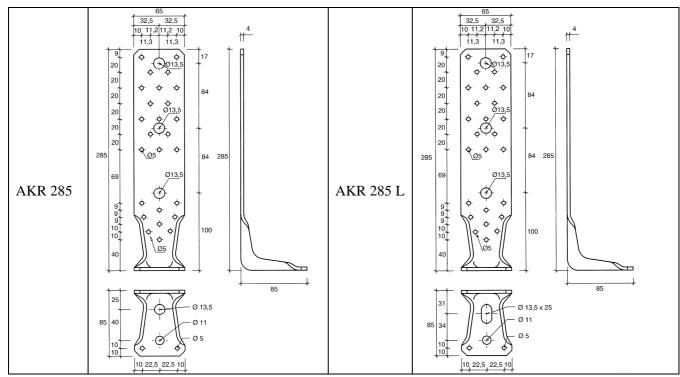
For a timber with a size $< 100 \times 100 \text{mm}$: the capacity of the bolts in the timber are to be checked: n x $F_{v,RK}$; with n= number of bolts

It must be checked, that the anchor fulfils the following formula:

$$\frac{F_{1,d}}{R_{anabored}} \le 1$$

D63: AKR


	alternative names			
Product Name	UK	France	DK	D
AKR				


.... with following numbers and letters as shown in the table below

S25	0GD	stainless steel
4,0mm	3,0mm	3,0mm
AKR95G	AKR95x3	AKR95S
AKR95LG	AKR95x3L	AKR95LS
AKR135G	AKR135x3	AKR135S
AKR135LG	AKR135x3L	AKR135LS
AKR285G	AKR285x3	AKR285S
AKR285LG	AKR285x3L	AKR285LS

The letter "L" in the name shows, that a long hole is in the short flange.

Figure D63-1: Drawings

The thickness may also be 3,0 mm

Table D63-1: Size specification

n/a

Table D63-2: Material specification

	1	
Material thickness	Material Grades	Coating specification
4	S235JR according to EN	Hot-dip galvanized according to
4	10025:2004	EN ISO 1461:1999
3	S250 GD according to EN	Pre-galvanized steel min Z275
3	10326:2004	according to EN10326:2004
3	Or stainless steel as	
3	described	

Figure D63-2: Nail pattern

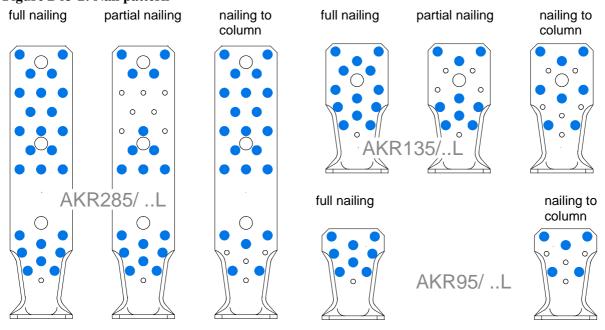


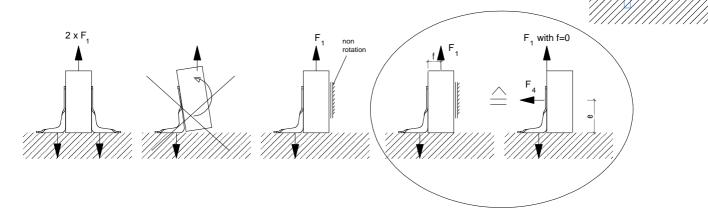
Table D63-3: Characteristic capacity

Load direction F_1 for one AKR

	nail	n	for CNA	1,0x40	for CNA4	,0x50	for CNA4	,0x60
Туре	pattern		$R_{\text{bend,nail,k}}$	$R_{1,nail,k}$	$R_{bend,nail,k}$	$R_{1,nail,k}$	$R_{\text{bend,nail,k}}$	$R_{1,nail,k}$
AKR95	full	8	4,3	8,9	5,8	11,4	7,2	13,2
AKR135	full	13	4,3	16,1	5,8	20,5	7,2	23,5
AKR285	full	25	4,3	22,8	5,8	29,6	7,2	35,2
AKR95L	full	8	2,9	6,7	3,9	8,7	4,9	10,4
AKR135L	full	13	2,9	12,5	3,9	16,2	4,9	19,2
AKR285L	full	25	2,9	16,5	3,9	21,7	4,9	26,4
AKR135	partial	9	4,3	10,7	5,8	13,7	7,2	15,8
AKR285	partial	18	4,3	20,5	5,8	26,3	7,2	30,5
AKR135L	partial	9	2,9	8,3	3,9	10,7	4,9	12,7
AKR285L	partial	18	2,9	15,6	3,9	20,3	4,9	24,3
AKR95	column	5	4,3	5,8	5,8	7,4	7,2	8,6
AKR135	column	8	4,3	10,4	5,8	13,1	7,2	15,0
AKR285	column	22	4,3	21,0	5,8	27,2	7,2	32,2
AKR95L	column	5	2,9	4,4	3,9	5,8	4,9	6,9
AKR135L	column	8	2,9	8,2	3,9	10,6	4,9	12,5
AKR285L	column	22	2,9	15,4	3,9	20,2	4,9	24,4

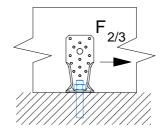
n = number of nails according the nail pattern

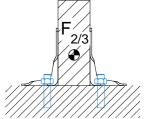
For an AKR with a thickness of 4,0mm:
$$R_{1,k} = \min \left\{ \frac{R_{1,nail,k}}{\frac{21,43kN}{k_{\text{mod}}}} + R_{bend,nail,k} \right\}$$


For an AKR with a thickness of 3,0mm:
$$R_{1,k} = \min \begin{cases} R_{1,nail,k} \\ \frac{12,52kN}{k_{\rm mod}} + R_{bend,nail,k} \end{cases}$$

with $R_{1,nail,k}$ and $R_{bend,nail,k}$ are given in the table before.

The force shall act in the middle of the beam/column, or the eccentricity may be overcome by clamping or an extra calculated force F_4 shall be considered.


The values are also applicable for a connection with a gap between the short flange of the AKR and the bearing, for F_1 load direction only.


The bolt shall have a capacity to sustain an axial force of F_{1,d}

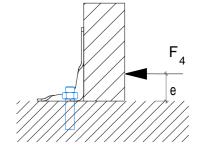
hea I	direction	F	for one	ΔKR
Loau	airection	F 2/3 .	TOF OHE	ANK

	212/3:101 0	Characteristic cap			
		n	for CNA	for CNA	for CNA
Туре	nail pattern	••	4,0x40	4,0x50	4,0x60
AKR95	full	8	2,5	3,1	3,4
AKR135	full	13	4,1	5,1	5,6
AKR285	full	25	4,8	6,4	7,9
AKR95L	full	8	2,2	2,8	3,1
AKR135L	full	13	3,6	4,5	5,1
AKR285L	full	25	3,3	4,3	5,4
AKR135	partial	9	3,0	3,8	4,2
AKR285	partial	18	3,5	4,7	5,8
AKR135L	partial	9	2,6	3,3	3,7
AKR285L	partial	18	2,4	3,2	4,0
AKR95	column	5	1,8	2,2	2,5
AKR135	column	8	2,8	3,5	3,9
AKR285	column	22	3,0	4,0	5,0
AKR95L	column	5	1,5	1,9	2,2
AKR135L	column	8	2,4	3,1	3,5
AKR285L	column	22	2,0	2,7	3,4

n = number of nails according the nail pattern

The connected beam shall be free of twisting, so that no rotation occurs. For a connection at a column for this load direction: it's recommended to use 2 No. AKR.

The bolt shall have a capacity to sustain an axial force of $F_{2,d}$ x 0,2 , and a lateral force of $F_{2,d}$ / n_{AKR} . with n_{AKR} = number of AKR


Load direction F₄

for AKR with a thickness of 4,0mm:

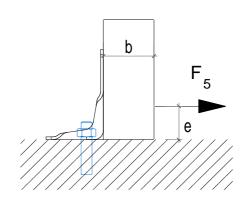
$$R_{4,k} = \min \begin{cases} \frac{10,6kN \times 50mm}{e} \\ \frac{51kNmm}{e - 71mmm} \end{cases}$$

for AKR with a thickness of 3,0mm:

$$R_{4,k} = \min \begin{cases} \frac{6,3kN \times 50mm}{e} \\ \frac{28,7kNmm}{e - 71mmm} \end{cases}$$

Negative values may not be considered

To calculate $R_{4,d} = R_{4,k} \ x \ k_{mod} / \gamma$ the k_{mod} shall be taken as 1,0 for all load durations. The bolt shall have a capacity to sustain an axial force of $F_{4,d} \ x \ 1,5$, and a lateral force of $F_{4,d} \ x \ 1,0$.


Load direction F₅

	nail		e < 71		е	> 71
Туре	pattern	n	X_1	e _{max force}	X_1	e _{max force}
AKR95	full	8	402		378	
AKR135	full	13	419		742	
AKR285	full	25	402		378	
AKR135	partial	9	357	131-e	480	e - 10
AKR285	partial	18	354	131-6	254	6 - 10
AKR95	column	5	244		256	
AKR135	column	8	247		500	
AKR285	column	22	244		256	

n = number of nails according the nail pattern

$$R_{5,k} = \min \begin{cases} \frac{X_1 \times R_{ax,k}}{e_{\text{max},force}} \\ \frac{536kNmm}{e} \\ \frac{51kNmm}{e - 71mm} \end{cases}$$

with $R_{\text{ax},k}$ = the axial characteristic capacity of the used nail sizes shall be insert in [mm]

Negative values may not be considered.

The bolt shall have a capacity to sustain an axial force of $F_{5,d} \times 1,0$, and a lateral force of $F_{5,d} \times 1,0$.

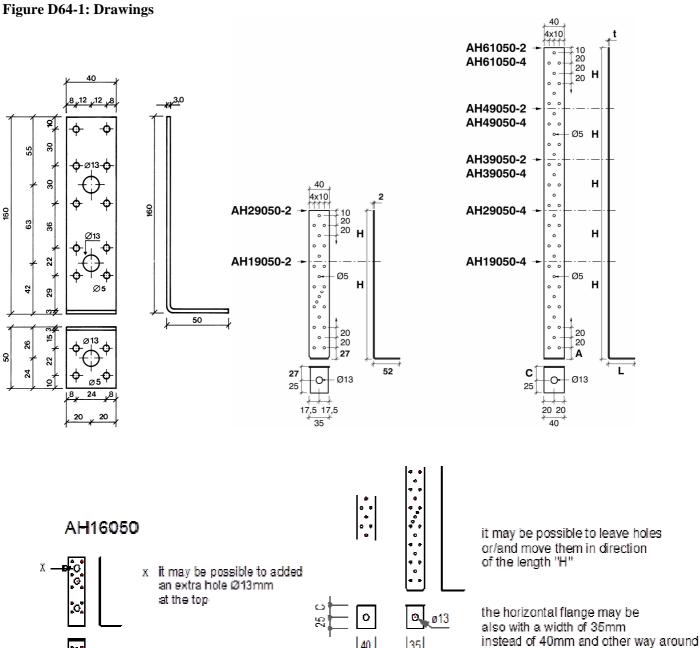
Load direction $F_{4/5}$

Туре	nail pattern	Characteristic capacity R _{4/5,k} [kN]
all with a thickness of 4,0mm	all	26,5
all witha thickness of 3,0mm	all	15,75

The size b shall be a minimum of 60mm.

The "left" AKR shall be checked for a tension force:

$$F_{1,d}^* = \frac{F_{4/5,d} \times (e-16,5mm)}{b+83mm}$$


F₁ from F_{4/5} $\mathsf{F}_{4/5}$ bolt 2 bolt 1

The bolt 1 shall have a capacity to sustain an axial force of $F_{1,d}^* \times 1,0$.

The bolt 2 shall have a capacity to sustain an axial force of $F_{4/5d} \times 0.5$, and a lateral force of $F_{5,d} \times 1.0$.

D64: AH

	alternative names			
Product Name	UK	France	DK	D
AHx				

Table D64-1: Size specification

Type	Н	L	t	A	С
	mm	mm	mm	mm	mm
AH16050	160	50	3		
AH19050-2	192	52	2		
AH29050-2	292	52	2		
AH39050-2	392	52	2	22	27
AH49050-2	492	52	2	22	27
AH61050-2	612	52	2	22	27
AH19050-4	194	54	4	24	29
AH29050-4	294	54	4	24	29
AH39050-4	394	54	4	24	29
AH49050-4	494	54	4	24	29
AH61050-4	614	54	4	24	29

Other lengths (H) are possible, for the same cross section the same capacity is given.

Table D64-2: Material specification

Material thickness	Material Grades	Coating specification
2;3;4	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
Washer: 10,0	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Figure D64-2: Nail pattern

	Minimum	Maximum
		Purlin = 10
AH16050	2	column = 6, the 4 lower
		holes can not be used
		Purlin: use all holes other
types 190xx and up		than the lower 2 holes
types 190xx and up		Column: use all holes other
		than the lower 3 holes

Table D64-3: Characteristic capacity

Load direction F_{1,k}

	characteristic capacity (kN)				
	min	. of			
type	timber	steel 1)			
AH16050					
AH19050/2					
AH29050/2					
AH39050/2					
AH49050/2					
AH61050/2	n x R _{lat.k}	15,0			
AH19050/4	,				
AH29050/4					
AH39050/4					
AH49050/4					
AH61050/4					

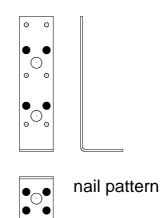
 $R_{lat,k} = lateral \ characteristic \ capacity \ of the \ nail$

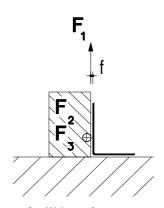
The washer to use is: US40/50/10.

It must be checked, that the anchor fulfils the following formula:

$$\frac{3 \times F_{1,d}}{R_{anchor,d}} \le 1$$

AH16050


For a connection between timber to timber members (column or beam) The connection is possible with a beam or a column at the vertical flap.


Table 64-4 With connector nails 4,0x40

angle bracket AH16050 with connector nails 4,0x40								
		1 Angle	Bracket	2 A	ngle Brad	cket		
load duration	k _{mod}	R _{1,k}	$\begin{array}{c} {R}_{2,k} \\ {R}_{3,k} \end{array}$	R _{1,k}	$\begin{array}{c} R_{2,k} \\ R_{3,k} \end{array}$	R _{4,k} R _{5,k}		
Р	0,6	0,6	1,2	1,6	2,4	1,3		
L	0,7	0,7	1,4	1,9	2,8	1,5		
М	0,8	0,8	1,6	2,2	3,2	1,7		
S	0,9	0,9	1,8	2,4	3,6	1,9		
I	1,1	1,1	2,2	2,7	4,4	2,1		

Table 64-5 With connector nails 4.0x60

table 94-5 With connector mans 4,0x00									
ang	angle bracket AH16050 with connector nails 4,0x60								
		1 Angle	Bracket	2 A	ngle Brad	cket			
load duration	k _{mod}	R _{1,k}	R _{2,k} R _{3,k}	R _{1,k}	R _{2,k} R _{3,k}	R _{4,k} R _{5,k}			
Р	0,6	1,0	1,6	2,7	3,1	2,1			
L	0,7	1,1	1,8	2,7	3,6	2,1			
М	8,0	1,2	2,1	2,7	4,2	2,1			
S	0,9	1,2	2,3	3,0	4,7	2,3			
I	1,1	1,2	2,9	3,9	5,7	2,9			

For using the capacity of use with one angle bracket it is assumed, the distance f will be $\sim 0 \text{ mm}$

D65: HD Tension Tie

	alternative names						
Product Name	UK	France	DK	D			
HDxx							

xx = size and size of bolt

Figure D65-1: Drawings

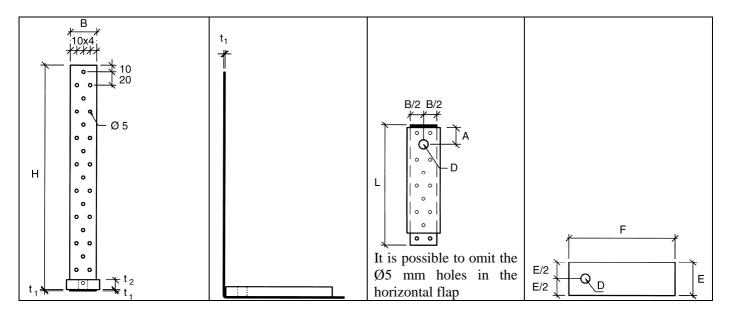


Table D65-1: Size specification

Type	Н	L	В	t_1	t_2	A	D	Е	F
HD340M12	340	182	40	2,0	15	25	12,5 or 14	50	160
HD400M16	400	123	40	3,0	15	25	16,5 or 18	60	110
HD420M16	420	222	60	2,0	20	35	16,5 or 18	60	200
HD420M20	420	102	60	2,0	20	35	20,5 or 22	60	85
HD480M20	480	123	60	2,5	20	35	20,5 or 22	70	115
HD140M12	140	90	60	2,0	12	25	14	50	90

Other lengths (H) and other width (B) are possible, for the same cross section the same capacity is given.

Table D65-2: Material specification

Material thickness	Material Grades	Coating specification
2;3	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
Washer 15; 20	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	

Figure D64-2: Nail pattern

rigure D04-2. Nan pattern							
	Minimum	Maximum					
		All holes can be used by					
All types	2	considering the minimum					
All types		distance of the nails to the					
		end of timber					

Table D65-3: Characteristic capacity

The characteristic load-carrying capacity in N of one Tension Tie is calculated as:

$$R_{1,k} = \min \begin{cases} \frac{W_{pl} \times 277}{A \times k_{\text{mod}}} \\ A_{gross} \times 223 / k_{\text{mod}} \\ n_{ef} \times R_{lat,k} \end{cases}$$

 $A_{gross} = gross cross sectional area of the vertical flap in mm² = <math>B t_1$, see table below

 $R_{la,k}$ = characteristic lateral Load-carrying capacity of one connector nail

 $n_{ef} = n^{k \text{ ef}}$ effective number of nails with k_{ef} by EC 5, table 8.1

 $k_r =$ reduction factor, see table 8

 $k_{mod} = load$ -duration factor

 W_{pl} = the plastic section modulus of the lower part; see table below

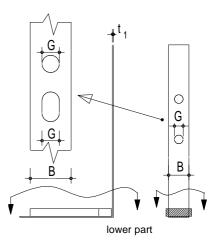
A = distance of the bolt hole to the vertical flange – as given in table D65-1

	A gross		W_{pl}
typ	[mm²]	k _r	[mm³]
HD340M12	80	0.84	2025
HD400M16	120	0.76	2363
HD420M16	120	0.82	4200
HD420M20	120	0.56	3800
HD480M20	150	0.68	4800
HD140M12	120	0.71	1296

It must be checked, that the anchor fulfils the following formula:

$$\frac{F_{1,d}}{R_{anchor,d} \times k_r} \le 1$$

A connection to the timber can also be occurring as shown next:

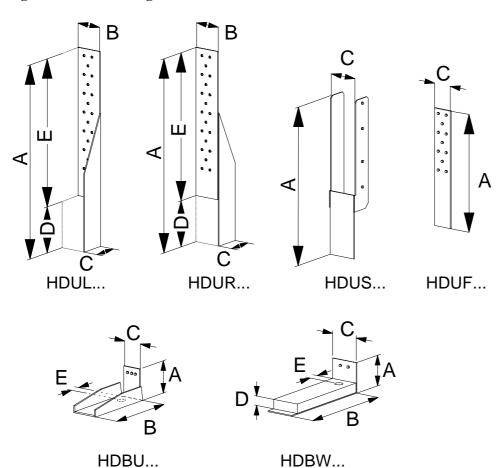

Larger holes are possible for bolts or other fastener instead of a nail pattern.

For this cases the value $R_{1,k}$ shall be calculate as:

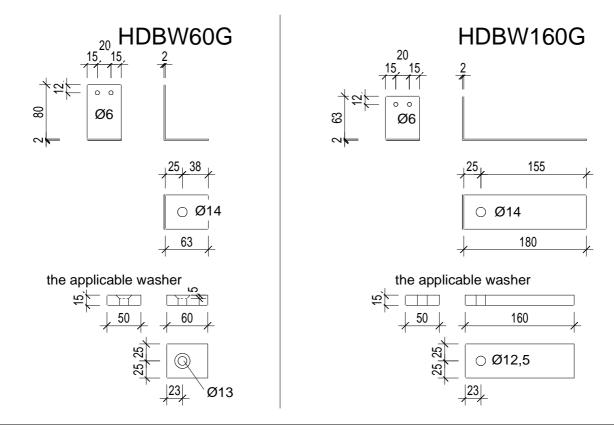
$$R_{1,k} = A_{net} \times 295 N / mm^2$$
 with $A_{net} = (B - G) \times t_1$

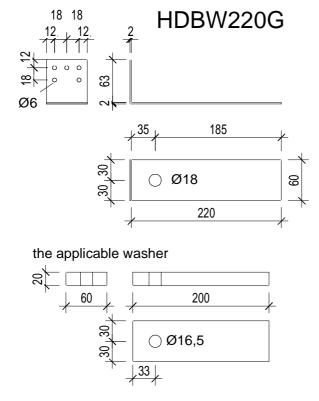
For $R_{\text{lat},k}$ shall be use the characteristic lateral load-carrying capacity of the used fastener.

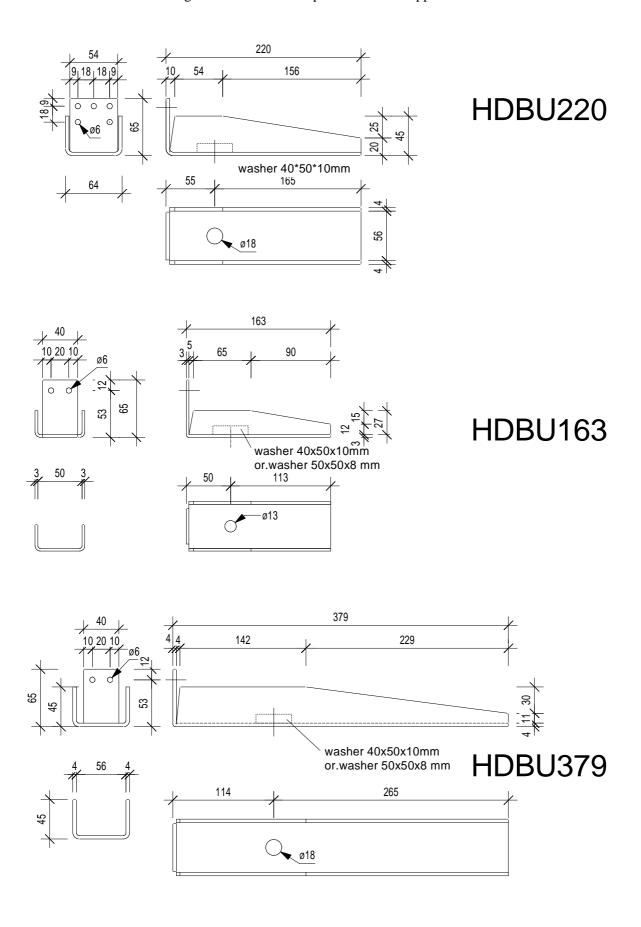
The lower part shall be as described before by using the $W_{\text{pl}}\,$ from the table before.

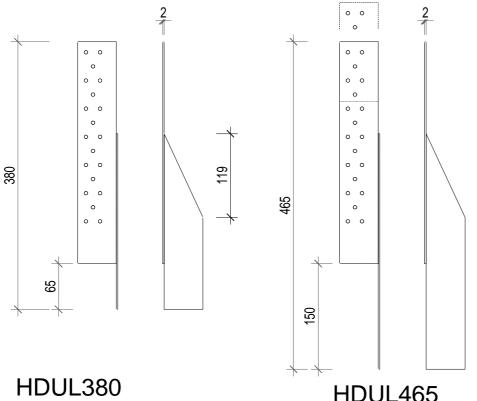

Installation on a timber floor:

For the pressure area it may be possible to use screws for the pressure. In this case the calculation for the screws may be done separately according to the following system: see after table D66-3 (HD2P)


D66: HD2P based on components


	alternative names						
Product Name	UK	France	DK	D			
HDULx							
HDURx							
HDUSx							
HDUFx							
HDBUx							
HDBWx							
HD2P60G *							
HD2PL40G **							


Figure D66-1: Drawings



^{*} from components HDUF400 and HDBU220 ** from components HDUF250 and HDBU163

HDUR380 mirror-image

HDUL465

HDUR465 mirror-image

HDULxx and HDURxx are analogolous

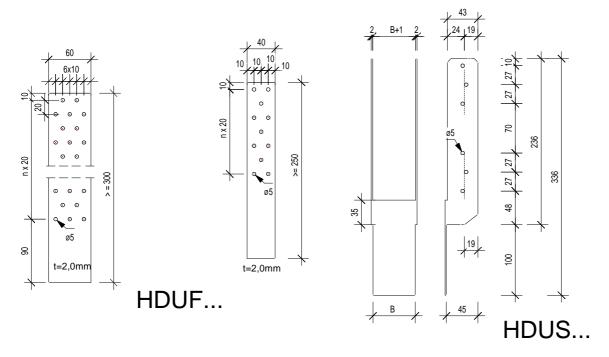


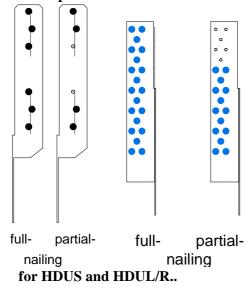
Table D66-1: Size specification

	Size specific		size [mm]					
	thickness	Α	В	С	D	E	Ø	
HDUF250G	2,0	250		40			5	
HDUF400G	2,0	400		60			5	
HDUS336G	2,0	336	>40				5	
HDUL380G	2,0	380	55	52,5 - 55,0	65	315	5	
HDUR380G	2,0	380	55	52,5 - 55,0	65	315	5	
HDUL465G	2,0	465	55	52,5 - 55,0	150	315	5	
HDUR465G	2,0	465	55	52,5 - 55,0	150	315	5	
HDUL xx G	2,0	≥ 300	55	52,5 - 55,0	≥ 65	A - D	5	
HDUR xx G	2,0	≥ 300	55	52,5 - 55,0	≥ 65	A - D	5	
HDUF40XG	2,0	≥ 250		≥ 40			5	
HDUF60XG	2,0	≥ 250		60			5	
HDBU163G	3,0	65	163	40		50	13 ¹⁾	
HDBU220G	4,0	65	220	54		55	18 ^{1) 2)}	
HDBU379G	4,0	65	379	40		114	18 ^{1) 2)}	
HDBW60G	2,0 + 15,0	82	65	50	15	27	13,0	
HDBW160G	2,0 + 15,0	65	182	50	15	27	12,5	
HDBW200G	2,0 + 20,0	65	222	60	20	37	16,5	

Together with: 1) US40/50/10G; 2) US50/50/8G

For HDBUx and HDBWx (bottom parts) are possible to modify the size A

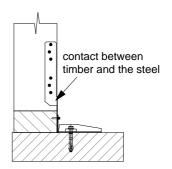
The connection between the upper and lower part governed by the self tapping screws EJOT JT2-3-5,5x25 or with equivalent screws.


combinations		JF250	HDUF400	HDUS336	HDUR380 ₅	HDUR380 a	465	HDUR465	HDUF40X	нригеох
	combinations	HDU	ηαн	ηαн	ηαн	ηДΗ	'ANDH	ηαн	ηαн	ηαн
parts	HDBU163G	0	0	0	0	0	0	0	0	
	HDBU220G		0		0	0	0	0		0
lower	HDBU379G	0	0	0	0	0	0	0	0	0
<u> </u>	HDBW60G	0	0	0	0	0	0	0	0	
	HDBW160G	0	0	0	0	0	0	0	0	
	HDBW200G		0	0	0	0	0	0		0

The free cells show non logical or non possible combinations.

Table D66-2: Material specification

Material thickness	Material Grades	Coating specification
2;3	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
Washer 15; 20	S235JR according to EN 10025:2004	Hot-dip galvanized according to EN ISO 1461:1999
	Or stainless steel as described	


Figure D66-2: Nail pattern

	Minimum	Maximum
		All holes can be used by
HDUF	2	considering the minimum
		distance of the nails to the
		end of the timber
HDUS	Partial nailing 2x4 nails	full nailing, 2x6 nails
HDUL/R	Partial nailing 14 nails	full nailing, 20 nails

Table D66-3: Characteristic capacity

Model	R _{1,k} [kN]
HDUF250G	$\min \begin{cases} n_{ef} \times R_{lat,k} \\ 17,8kN/k_{mod} \end{cases}$
HDUF40XG	$17,8kN/k_{\rm mod}$
HDUF400G	$\min \begin{cases} n_{ef} \times R_{lat,k} \\ 26.7 kN / k_{\text{mod}} \end{cases}$
HDUF60XG	$26,7 kN / k_{\rm mod}$
HDUS336G	$\min \begin{cases} C \times n_{per-side} \times R_{lat,k} \\ 23,1kN/k_{mod} \end{cases} or \min \begin{cases} D \times R_{lat,k} \\ 17,95kN/k_{mod} \end{cases}$ using the formula with "C", for contact between the hold down and the timber and the timber Fullnailing: D=10,47 partial nailing: D= 7,41
HDUL380G	
HDUR380G	
HDUL465G	$C \times R_{lat,k}$ full nailing: C=11,7
HDUR465G	min $\begin{cases} C \times R_{lat,k} & \text{full nailing: } C=11,7 \\ 21,4 \times R_{ax,k} & \text{partial nailing: } C=8,1 \end{cases}$
HDULxxG	
HDURxxG	

Table 5			factor	max
Model	R _{1,k} [kN]	$R_{s,k}[kN]$	k_r	n _s
HDBU163G with 1)		13,7	1,55	2
HDBU220G with 1)2)		34,6	1,40	3
HDBU379G with 1)2)	$\min \left\{ \frac{R_{s,k}}{k} / k_{\text{mod}} \right\}$	16,7	1,46	2
HDBW60G	$\min \left\{ V_{R,k} \times n_{sc} / k_{\text{mod}} \right\}$	19,8	2,00	2
HDBW160G		21,2	1,24	2
HDBW200G		23.4	1.23	3

It is imperativ:

$$R_{1,d} = \frac{R_{1,k} \times k_{\text{mod}}}{\gamma}$$

with γ for timber.

It shall be to check:

$$R_{bolt,d} \ge F_{1,d} \times k_r$$

With:

= n^{kef} effective number of nails with k_{ef} by EC 5, table 8.1

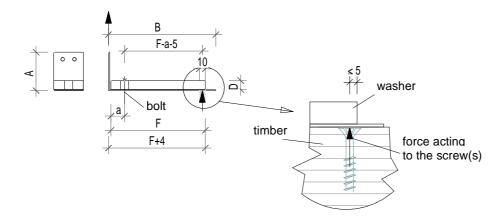
 $n_{per.-side}$ = number of nails on each side

 $\dot{V}_{R,k}$ = characteristic Capacity of self-tapping screws (for EJOT JT2-3-5,5*25 $V_{R,k}$ = 6,4 kN)

 n_{sc} = number of self-tapping screws

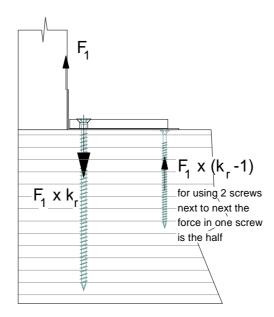
 $R_{ax,k}$ = characteristic axial capacity of one nail in kN

 $R_{bolt,k}$ = characteristic withdrawal capacity of the (anchor)-bolt in kN $R_{lat,k}$ = characteristic lateral load-carrying capacity of one nail in kN


 k_r = factor to calculate the force in the bolt

 $R_{s,k}$ = capacity given in the table

The capacity of a combination of an upper and lower part is given by the lower capacity of both parts.


Installation on a timber floor:

For the pressure area it may be possible to use screws for the pressure. In this case the calculation for the screws may be done separately according the following system:

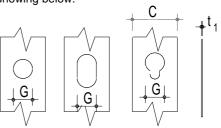
The force for the screws at the end of the washer may be calculated with the given lever arms. The screws may be placed with a distance of 5 mm from the end of the washer.

The force axial to the screw is: $F_{ax,d} = F_{1,d} x (k_r - 1)$ as compression

The distances between the screws and to the edges are to be considered, as given in an approval or according EN1995 or a national standard.

A connection to the timber can also be occurring with a HDUFxx next

Larger holes are possible for bolts or other fasteners instead of a nail. For this cases the value $R_{1,k}$ shall be calculate as:


$$R_{1,k} = \min \begin{cases} n_{ef} \times R_{lat,k} \\ A_{net} \times 295 \frac{N}{mm^2} \\ k_{mod} \end{cases}$$

With $A_{net} = (C-G) \times t_1$

 $R_{\text{lat},k}$ is the characteristic lateral load-carrying capacity of the used fastener.

The length of the HDUF may be selected as required for the used fastener.

HDUF: the hole pattern may be modified as showing below:

D67: BETA

	alternative names			
Product Name	UK	France	DK	D
BETA				

Figure D67-1: Drawings

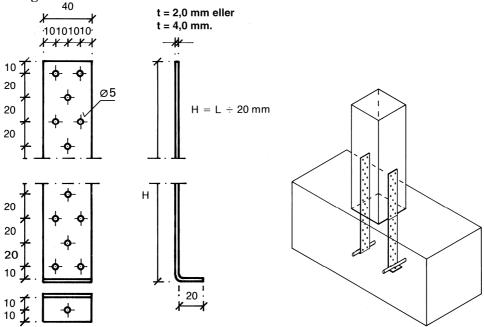


Table D67-1: Size specification

Type	L	t
	mm	mm
BETA2/200	200	2,0
BETA2/300	300	2,0
BETA2/400	400	2,0
BETA2/500	500	2,0
BETA2/600	600	2,0
BETA4/600	200	4,0
BETA4/600	300	4,0
BETA4/600	400	4,0
BETA4/600	500	4,0
BETA4/600	600	4,0

Other lengths of the vertical flange are possible, for the same cross section the same capacity is given.

Table D67-2: Material specification

Material thickness	Material Grades	Coating specification
2;4	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
	Or stainless steel as described	

Table D67-3: Characteristic capacity

The characteristic load-carrying capacity of one Concrete anchor strap is calculated as:

$$R_{1,k} = \min \begin{cases} A_{st} \times 0.37 \times f_{c,k}^{2/3} / k_{\text{mod}} \\ n_{ef} \times R_{lat,k} \\ 223 \times A_{gross} / k_{\text{mod}} \end{cases}$$

characteristic compression strength of the concrete according to EN 1992-1-1

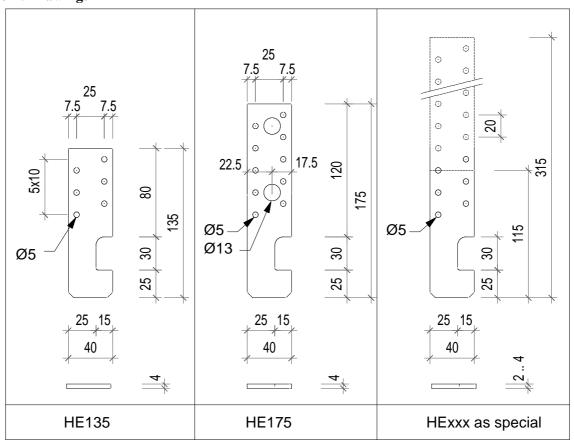
 $\begin{array}{l} f_{c,k} = \\ n_{ef} = \ n^{k \ ef} \end{array}$ effective number of nails with k_{ef} by EC 5, table 8.1 $R_{lat,k} =$ characteristic lateral capacity of the connector nails

 $A_{gross} =$ gross area of the vertical flap in mm²

 $k_{mod} =$ load-duration factor

 $l_c =$ embedment length in concrete in mm

embedding face with a minimum l_c of 100mm, for a larger l_C it will be changed by: $A_{st} = A_{st(table)}$


100mm x l_c

Туре	A _{gross} [mm²]	A _{st} [mm²]
BETA2/200	80	8400
BETA2/300	80	8400
BETA2/400	80	8400
BETA2/500	80	8400
BETA2/600	80	8400
BETA4/600	160	8800

D68: HE Anchor

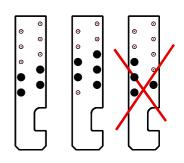
	alternative names			
Product Name	UK	France	DK	D
HE				

Figure D68-1: Drawings

Table D68-1: Size specification

n/a

Table D68-2: Material specification


Material thickness	Material Grades	Coating specification
2;4	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
	Or stainless steel as described	

Nail pattern:

	Minimum	Maximum
HE135	3	6
HE175	3	10
HE XXX	3	22

The size for type HE xxx may be in a range from 115 mm to 315 mm in steps of 20mm

The nails shall be placed alternating in height.

Table D68-3: Characteristic capacity

The characteristic load-carrying capacity of one HE Anchor is calculated as:

$$R_{1,k} = \min \begin{cases} C \times R_{lat,k} \\ 8.5kN/k_{mod} \end{cases}$$

 $R_{\,\, la,k}\!=\!\,$ characteristic lateral capacity of the connector nails / bolt M12

C = the factor from the following table

 $k_{mod} = \ load\text{-}duration\ factor$

Table 68-4

no	l _p	factor
of nails	[mm²]	"C"
3	800	3.0
4	1944	3.8
5	2230	4.4
6	2688	4.7
7	4557	6.1
8	5450	6.6
9	8278	8.0
10	9813	8.6

Table 68-5

no	l _p	faktor
of bolt	[mm²]	"C"
2 M12	1800	1,9

D69: PROFA

	alternative names			
Product Name	UK	France	DK	D
PROFA				

Figure D69-1: Drawings

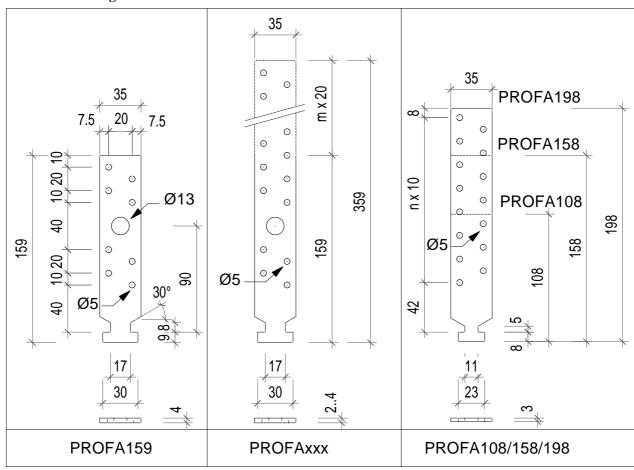
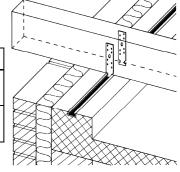
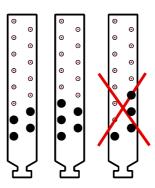



Table D69-1: Size specification

n/a

Table D69-2: Material specification

Material thickness	Material Grades	Coating specification
2;4	S250 GD according to EN 10326:2004	Pre-galvanized steel min Z275 according to EN10326:2004
	Or stainless steel as described	



Nail pattern:

run pattern.				
	Minimum	Maximum		
PROFA108	2	6		
PROFA158	2	10		
PROFA198	2	14		
PROFA159	2	8		
PROFA XXX	2	28		

The size for type PROFA xxx may be in a range from 159 mm to 359 mm in steps of 20mm

The nails shall be placed alternating in height.

Table D69-3: Characteristic capacity

The characteristic load-carrying capacity of one Profile Anchor is calculated as:

For PROFA 108/158/198 (thickness = 3,0 mm)

$$R_{1,k} = \min \begin{cases} n \times R_{la,k} \\ 6,3kN / k_{\text{mod}} \end{cases}$$

For PROFA 159 to PROFA 359 (thickness = 4,0mm)

$$R_{1,k} = \min \begin{cases} n \times R_{la,k} \\ 9.4kN/k_{\text{mod}} \end{cases}$$

For PROFA 159 to PROFA 359 (thickness = 3,0mm)

$$R_{1,k} = \min \begin{cases} n \times R_{la,k} \\ 7,1kN / k_{\text{mod}} \end{cases}$$

For PROFA 159 to PROFA 359 (thickness = 2,0mm in steel 1.4529)

$$R_{1,k} = \min \begin{cases} n \times R_{la,k} \\ 5,65kN/k_{\text{mod}} \end{cases}$$

n = number of the nails / connector screws; the nails will be used side by side.

 $R_{lat,k}$ = characteristic lateral capacity of the connector nail / bolt M12

 $k_{mod} = load$ -duration factor